Suppr超能文献

一种用于脑磁图/脑电图的神经团模型:耦合与神经元动力学

A neural mass model for MEG/EEG: coupling and neuronal dynamics.

作者信息

David Olivier, Friston Karl J

机构信息

Wellcome Department of Imaging Neuroscience, Functional Imaging Laboratory, 12 Queen Square, London WC1N 3BG, UK.

出版信息

Neuroimage. 2003 Nov;20(3):1743-55. doi: 10.1016/j.neuroimage.2003.07.015.

Abstract

Although MEG/EEG signals are highly variable, systematic changes in distinct frequency bands are commonly encountered. These frequency-specific changes represent robust neural correlates of cognitive or perceptual processes (for example, alpha rhythms emerge on closing the eyes). However, their functional significance remains a matter of debate. Some of the mechanisms that generate these signals are known at the cellular level and rest on a balance of excitatory and inhibitory interactions within and between populations of neurons. The kinetics of the ensuing population dynamics determine the frequency of oscillations. In this work we extended the classical nonlinear lumped-parameter model of alpha rhythms, initially developed by Lopes da Silva and colleagues [Kybernetik 15 (1974) 27], to generate more complex dynamics. We show that the whole spectrum of MEG/EEG signals can be reproduced within the oscillatory regime of this model by simply changing the population kinetics. We used the model to examine the influence of coupling strength and propagation delay on the rhythms generated by coupled cortical areas. The main findings were that (1) coupling induces phase-locked activity, with a phase shift of 0 or pi when the coupling is bidirectional, and (2) both coupling and propagation delay are critical determinants of the MEG/EEG spectrum. In forthcoming articles, we will use this model to (1) estimate how neuronal interactions are expressed in MEG/EEG oscillations and establish the construct validity of various indices of nonlinear coupling, and (2) generate event-related transients to derive physiologically informed basis functions for statistical modelling of average evoked responses.

摘要

尽管脑磁图/脑电图(MEG/EEG)信号高度可变,但在不同频段的系统性变化却很常见。这些特定频率的变化代表了认知或感知过程中稳健的神经关联(例如,闭眼时会出现阿尔法节律)。然而,它们的功能意义仍存在争议。在细胞水平上,一些产生这些信号的机制是已知的,并且依赖于神经元群体内部和之间兴奋性与抑制性相互作用的平衡。随之而来的群体动力学的动力学决定了振荡频率。在这项工作中,我们扩展了最初由洛佩斯·达席尔瓦及其同事[《控制论》15(1974年)27]开发的阿尔法节律经典非线性集总参数模型,以产生更复杂的动力学。我们表明,通过简单地改变群体动力学,MEG/EEG信号的整个频谱可以在该模型的振荡范围内重现。我们使用该模型来研究耦合强度和传播延迟对耦合皮质区域产生的节律的影响。主要发现是:(1)耦合会诱导锁相活动,当耦合是双向时,相移为0或π;(2)耦合和传播延迟都是MEG/EEG频谱的关键决定因素。在即将发表的文章中,我们将使用这个模型来:(1)估计神经元相互作用如何在MEG/EEG振荡中表现出来,并建立各种非线性耦合指标的结构效度;(2)生成事件相关瞬变,以导出用于平均诱发反应统计建模的具有生理学依据的基函数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验