Suppr超能文献

自发性脑磁图的二阶瞬时因果分析

Second-order instantaneous causal analysis of spontaneous MEG.

作者信息

Zhu Yongjie, Parkkonen Lauri, Hyvärinen Aapo

机构信息

Department of Computer Science, University of Helsinki, Helsinki, Finland.

Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland.

出版信息

Imaging Neurosci (Camb). 2025 Apr 25;3. doi: 10.1162/imag_a_00553. eCollection 2025.

Abstract

Despite decades of research, discovering instantaneous causal relationships from observational brain imaging data, such as spontaneous MEG energies or fMRI, remains a difficult problem. Popular methods, such as Granger Causality and Non-Gaussian Structural Equation Models (SEM), either are unable to handle instantaneous effects or do not work because the data are not non-Gaussian enough. Here, we propose a model with instantaneous causality for temporally dependent variables; these are both very common properties in neuroimaging data. Then, we propose a method to estimate the causal directions based on likelihood ratios, which are related to mutual information between the residual and data variables. We thus construct a simple decision criterion that allows for instantaneous causal discovery in time-dependent data. The proposed method is computationally and conceptually very simple, and we show with simulated data that it performs well even in the case of limited sample sizes, presumably due to the general optimality properties of likelihood. We further apply it to an MEG dataset from the Cam-CAN repository, for which the method gives consistent causal directionalities of energies both intra-subject and inter-subject, as measured by split-half tests. It also gives better performance than Granger causality and non-Gaussian SEM methods in a brain age prediction task. The results also demonstrate that our method might be useful in analyzing causal brain connectomes in functional brain-imaging data.

摘要

尽管经过了数十年的研究,但从观测性脑成像数据(如自发脑磁图能量或功能磁共振成像)中发现即时因果关系仍然是一个难题。常用方法,如格兰杰因果关系法和非高斯结构方程模型(SEM),要么无法处理即时效应,要么由于数据的非高斯性不足而不起作用。在此,我们提出了一个针对时间相关变量的具有即时因果关系的模型;这些在神经成像数据中都是非常常见的属性。然后,我们提出了一种基于似然比来估计因果方向的方法,似然比与残差和数据变量之间的互信息有关。因此,我们构建了一个简单的决策标准,可用于在时间相关数据中进行即时因果发现。所提出的方法在计算和概念上都非常简单,并且我们通过模拟数据表明,即使在样本量有限的情况下它也表现良好,这可能归因于似然的一般最优属性。我们进一步将其应用于来自剑桥衰老与神经科学中心(Cam-CAN)数据库的脑磁图数据集,通过对分半测试测量,该方法在个体内和个体间都给出了能量一致的因果方向性。在脑年龄预测任务中,它也比格兰杰因果关系法和非高斯结构方程模型方法表现更好。结果还表明,我们的方法可能有助于分析功能性脑成像数据中的因果脑连接组。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b385/12320013/34e87d6f043e/imag_a_00553_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验