Iwasa Yoh, Michor Franziska, Nowak Martin A
Department of Biology, Faculty of Sciences, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan.
J Theor Biol. 2004 Jan 21;226(2):205-14. doi: 10.1016/j.jtbi.2003.08.014.
Whenever life wants to invade a new habitat or escape from a lethal selection pressure, some mutations may be necessary to yield sustainable replication. We imagine situations like (i) a parasite infecting a new host, (ii) a species trying to invade a new ecological niche, (iii) cancer cells escaping from chemotherapy, (iv) viruses or microbes evading anti-microbial therapy, and also (v) the repeated attempts of combinatorial chemistry in the very beginning of life to produce self-replicating molecules. All such seemingly unrelated situations have a common structure in terms of Darwinian dynamics: a replicator with a basic reproductive ratio less than one attempts to find some mutations that allow indefinite survival. We develop a general theory, based on multitype branching processes, to describe the evolutionary dynamics of invasion and escape.
每当生命想要侵入一个新的栖息地或逃离致命的选择压力时,可能需要一些突变才能实现可持续复制。我们可以想象这样的情况:(i)一种寄生虫感染新宿主;(ii)一个物种试图侵入一个新的生态位;(iii)癌细胞从化疗中逃逸;(iv)病毒或微生物逃避抗菌治疗;以及(v)在生命起源之初组合化学为产生自我复制分子而进行的反复尝试。从达尔文动力学的角度来看,所有这些看似不相关的情况都有一个共同的结构:一个基本繁殖率小于1的复制因子试图找到一些能使其无限存活的突变。我们基于多类型分支过程发展了一个通用理论,以描述入侵和逃逸的进化动力学。