Suppr超能文献

XopC和XopJ,两种来自野油菜黄单胞菌疮痂致病变种的新型III型效应蛋白。

XopC and XopJ, two novel type III effector proteins from Xanthomonas campestris pv. vesicatoria.

作者信息

Noël Laurent, Thieme Frank, Gäbler Jana, Büttner Daniela, Bonas Ulla

机构信息

Institute of Genetics, Martin-Luther-University Halle-Wittenberg, D-06099 Halle (Saale), Germany.

出版信息

J Bacteriol. 2003 Dec;185(24):7092-102. doi: 10.1128/JB.185.24.7092-7102.2003.

Abstract

Pathogenicity of the gram-negative plant pathogen Xanthomonas campestris pv. vesicatoria depends on a type III secretion (TTS) system which translocates bacterial effector proteins into the plant cell. Previous transcriptome analysis identified a genome-wide regulon of putative virulence genes that are coexpressed with the TTS system. In this study, we characterized two of these genes, xopC and xopJ. Both genes encode Xanthomonas outer proteins (Xops) that were shown to be secreted by the TTS system. In addition, type III-dependent translocation of both proteins into the plant cell was demonstrated using the AvrBs3 effector domain as a reporter. XopJ belongs to the AvrRxv/YopJ family of effector proteins from plant and animal pathogenic bacteria. By contrast, XopC does not share significant homology to proteins in the database. Sequence analysis revealed that the xopC locus contains several features that are reminiscent of pathogenicity islands. Interestingly, the xopC region is flanked by 62-bp inverted repeats that are also associated with members of the Xanthomonas avrBs3 effector family. Besides xopC, a second gene of the locus, designated hpaJ, was shown to be coexpressed with the TTS system. hpaJ encodes a protein with similarity to transglycosylases and to the Pseudomonas syringae pv. maculicola protein HopPmaG. HpaJ secretion and translocation by the X. campestris pv. vesicatoria TTS system was not detectable, which is consistent with its predicted Sec signal and a putative function as transglycosylase in the bacterial periplasm.

摘要

革兰氏阴性植物病原菌野油菜黄单胞菌疮痂致病变种(Xanthomonas campestris pv. vesicatoria)的致病性依赖于III型分泌(TTS)系统,该系统可将细菌效应蛋白转运到植物细胞中。先前的转录组分析确定了一个全基因组范围的假定毒力基因调控子,这些基因与TTS系统共表达。在本研究中,我们对其中两个基因xopC和xopJ进行了表征。这两个基因均编码黄单胞菌外蛋白(Xops),已证明它们可通过TTS系统分泌。此外,使用AvrBs3效应域作为报告基因,证明了这两种蛋白均可通过III型依赖性转运进入植物细胞。XopJ属于来自植物和动物病原菌的效应蛋白AvrRxv/YopJ家族。相比之下,XopC与数据库中的蛋白质没有显著同源性。序列分析表明,xopC基因座包含几个让人联想到致病岛的特征。有趣的是,xopC区域两侧是62个碱基对的反向重复序列,这些序列也与野油菜黄单胞菌avrBs3效应子家族的成员相关。除了xopC,该基因座的另一个基因hpaJ也被证明与TTS系统共表达。hpaJ编码一种与转糖基酶以及丁香假单胞菌番茄致病变种(Pseudomonas syringae pv. maculicola)蛋白HopPmaG相似的蛋白。未检测到野油菜黄单胞菌疮痂致病变种TTS系统对HpaJ的分泌和转运,这与其预测的Sec信号以及在细菌周质中作为转糖基酶的假定功能一致。

相似文献

1
XopC and XopJ, two novel type III effector proteins from Xanthomonas campestris pv. vesicatoria.
J Bacteriol. 2003 Dec;185(24):7092-102. doi: 10.1128/JB.185.24.7092-7102.2003.
4
Type III effector proteins from the plant pathogen Xanthomonas and their role in the interaction with the host plant.
J Plant Physiol. 2006 Feb;163(3):233-55. doi: 10.1016/j.jplph.2005.11.011. Epub 2005 Dec 28.
7
9
The Xanthomonas Hrp type III system secretes proteins from plant and mammalian bacterial pathogens.
Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9368-73. doi: 10.1073/pnas.96.16.9368.
10
The type III secretion effector XopXccN of Xanthomonas campestris pv. campestris is required for full virulence.
Res Microbiol. 2008 Apr;159(3):216-20. doi: 10.1016/j.resmic.2007.12.004. Epub 2007 Dec 24.

引用本文的文献

1
Translocation of YopJ family effector proteins through the VirB/VirD4 T4SS of .
Proc Natl Acad Sci U S A. 2024 May 14;121(20):e2310348121. doi: 10.1073/pnas.2310348121. Epub 2024 May 6.
2
Complete genome sequence of an Israeli isolate of pv. pelargonii strain 305 and novel type III effectors identified in .
Front Plant Sci. 2023 Jun 2;14:1155341. doi: 10.3389/fpls.2023.1155341. eCollection 2023.
3
Assembling highly repetitive Xanthomonas TALomes using Oxford Nanopore sequencing.
BMC Genomics. 2023 Mar 27;24(1):151. doi: 10.1186/s12864-023-09228-1.
4
Recognition of a translocation motif in the regulator HpaA from is controlled by the type III secretion chaperone HpaB.
Front Plant Sci. 2022 Jul 28;13:955776. doi: 10.3389/fpls.2022.955776. eCollection 2022.
5
Bacterial effectors mimicking ubiquitin-proteasome pathway tweak plant immunity.
Microbiol Res. 2021 Sep;250:126810. doi: 10.1016/j.micres.2021.126810. Epub 2021 Jun 30.
6
Need for speed: bacterial effector XopJ2 is associated with increased dispersal velocity of Xanthomonas perforans.
Environ Microbiol. 2021 Oct;23(10):5850-5865. doi: 10.1111/1462-2920.15541. Epub 2021 Jun 8.
8
Evolution of Transcription Activator-Like Effectors in Xanthomonas oryzae.
Genome Biol Evol. 2017 Jun 1;9(6):1599-1615. doi: 10.1093/gbe/evx108.
10
Non-host Resistance Induced by the Effector XopQ Is Widespread within the Genus and Functionally Depends on EDS1.
Front Plant Sci. 2016 Nov 30;7:1796. doi: 10.3389/fpls.2016.01796. eCollection 2016.

本文引用的文献

2
Genomic approaches in Xanthomonas campestris pv. vesicatoria allow fishing for virulence genes.
J Biotechnol. 2003 Dec 19;106(2-3):203-14. doi: 10.1016/j.jbiotec.2003.07.012.
3
Common infection strategies of plant and animal pathogenic bacteria.
Curr Opin Plant Biol. 2003 Aug;6(4):312-9. doi: 10.1016/s1369-5266(03)00064-5.
4
Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus.
Proc Natl Acad Sci U S A. 2003 Jun 24;100(13):8024-9. doi: 10.1073/pnas.1230660100. Epub 2003 Jun 3.
7
Getting across--bacterial type III effector proteins on their way to the plant cell.
EMBO J. 2002 Oct 15;21(20):5313-22. doi: 10.1093/emboj/cdf536.
8
Type III-dependent translocation of the Xanthomonas AvrBs3 protein into the plant cell.
Mol Microbiol. 2002 Oct;46(1):13-23. doi: 10.1046/j.1365-2958.2002.03139.x.
9
Direct biochemical evidence for type III secretion-dependent translocation of the AvrBs2 effector protein into plant cells.
Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):8336-41. doi: 10.1073/pnas.122220299.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验