Suppr超能文献

Transcriptional activation of immediate-early gene ETR101 by human T-cell leukaemia virus type I Tax.

作者信息

Chen Li, Ma Shiliang, Li Bo, Fink Trine, Zachar Vladimir, Takahashi Mark, Cuttichia Jamie, Tsui Lap-Chee, Ebbesen Peter, Liu Xiangdong

机构信息

Laboratory for Stem Cell Research, Aalborg University, Gustav Wieds Vej 10, DK-8000 Aarhus C, Denmark.

Department of Virus and Cancer, Danish Cancer Society, Gustav Wieds Vej 10, DK-8000 Aarhus C, Denmark.

出版信息

J Gen Virol. 2003 Dec;84(Pt 12):3203-3214. doi: 10.1099/vir.0.19283-0.

Abstract

Human T-cell leukaemia virus type I (HTLV-I) Tax regulates viral and cellular gene expression through interactions with multiple cellular transcription pathways. This study describes the finding of immediate-early gene ETR101 expression in HTLV-I-infected cells and its regulation by Tax. ETR101 was persistently expressed in HTLV-I-infected cells but not in HTLV-I uninfected cells. Expression of ETR101 was dependent upon Tax expression in the inducible Tax-expressing cell line JPX-9 and also in Jurkat cells transiently transfected with Tax-expressing vectors. Tax transactivated the ETR101 gene promoter in a transient transfection assay. A series of deletion and mutation analyses of the ETR101 gene promoter indicated that a 35 bp region immediately upstream of the TATA-box sequence, which contains a consensus cAMP response element (CRE) and a G+C-rich sequence, is the critical responsive element for Tax activation. Site-directed mutagenesis analysis of the 35 bp region suggested that both the consensus CRE motif and its upstream G+C-rich sequence were critical for Tax transactivation. Electrophoretic mobility shift analysis (EMSA) using the 35 bp sequence as probe showed the formation of a specific protein-DNA complex in HTLV-I-infected cell lines. EMSA with specific antibodies confirmed that the CREB transcription factor was responsible for formation of this specific protein-DNA complex. These results suggested that Tax directly transactivated ETR101 gene expression, mainly through a CRE sequence via the CREB transcription pathway.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验