Helliwell John R
Department of Chemistry, University of Manchester, Manchester M13 9PL, UK.
J Synchrotron Radiat. 2004 Jan 1;11(Pt 1):1-3. doi: 10.1107/s0909049503024099. Epub 2003 Nov 28.
New methodologies with synchrotron radiation and X-ray free electron lasers (XFELs) in structural biology are being developed. Recent trends in harnessing softer X-rays in protein crystallography for phase determination are described. These include reference to a data-collection test at 2.6 A wavelength with a lysozyme crystal on SRS station 7.2 (Helliwell, 1983) and also use of softer X-rays (2 A wavelength) to optimise f " at the xenon L1 absorption edge in the Single Isomorphous Replacement Optimised Anomalous Scattering ('SIROAS') structure determination of apocrustacyanin A1 with four, partially occupied, xenon atoms (Cianci et al., 2001; Chayen et al., 2000). The hand of the protein was determined using the f " enhanced sulphur anomalous signal from six disulphides in the protein dimer of 40 kDa. In a follow-up study the single wavelength xenon L1-edge f " optimised data set alone was used for phase determination and phase improvement by solvent flattening etc. (CCP4 DM) (Olczak et al., 2003). Auto-tracing of the protein was feasible but required additional diffraction data at higher resolution. This latter could be avoided in future by using improved tilted detector settings during use of softer X-rays, i.e. towards back-scattering recording (Helliwell, 2002). The Olczak et al. study has already led to optimisation of the new SRS beamline MPW MAD 10 (see www.nwsgc.ac.uk) firstly involving the thinning of the beryllium windows as much as possible and planning for a MAR Research tilted detector 'desk top beamline' geometry. Thus the use of softer, i.e. 2 to 3 A wavelength range, X-rays will allow optimisation of xenon and iodine L-edge f " and enhancing of sulphur f " signals for higher throughput protein crystallography. Softer X-rays utilisation in protein crystallography includes work done on SRS bending-magnet station 7.2 in the early 1980s by the author as station scientist (Helliwell, 1984). In the future development of XFELs these softer X-ray wavelengths could also be harnessed and relax the demands to some extent on the complexity and cost of an XFEL. Thus, by use of say 4 A XFEL radiation and use of a back-scattering geometry area detector the single molecule molecular transform could be sampled to a spatial resolution of 2 A, sufficient, in principle, for protein model refinement (Miao et al., 1999). Meanwhile, Miao et al. (2003) report the first experimental recording of the diffraction pattern from intact Escherichia coli bacteria using coherent X-rays, with a wavelength of 2 A, at a resolution of 30 nm and a real-space image constructed. The new single-particle X-ray diffraction-imaging era has commenced.
结构生物学中利用同步辐射和X射线自由电子激光(XFEL)的新方法正在不断发展。本文描述了蛋白质晶体学中利用软X射线进行相位测定的最新趋势。这些趋势包括提及在SRS第7.2号站用溶菌酶晶体在2.6 Å波长下进行的数据收集测试(赫利韦尔,1983年),以及在脱辅基虾青素A1的单同晶置换优化异常散射(“SIROAS”)结构测定中使用软X射线(2 Å波长)来优化氙L1吸收边处的f″,该结构中有四个部分占据的氙原子(钱奇等人,2001年;查延等人,2000年)。通过增强来自40 kDa蛋白质二聚体中六个二硫键的硫异常信号来确定蛋白质的手性。在后续研究中,仅使用单波长氙L1边f″优化数据集通过溶剂扁平化等方法进行相位测定和相位改善(CCP4 DM)(奥尔恰克等人,2003年)。蛋白质的自动追踪是可行的,但需要更高分辨率的额外衍射数据。未来通过在使用软X射线时采用改进的倾斜探测器设置,即朝着背散射记录方向设置,就可以避免这一点(赫利韦尔,2002年)。奥尔恰克等人的研究已经促成了新的SRS光束线MPW MAD 10的优化(见www.nwsgc.ac.uk),首先是尽可能减薄铍窗,并规划采用MAR Research倾斜探测器的“桌面光束线”几何结构。因此,使用2至3 Å波长范围的软X射线将能够优化氙和碘L边的f″,并增强硫f″信号,以实现更高通量的蛋白质晶体学研究。蛋白质晶体学中软X射线的利用包括作者在20世纪80年代初作为该站科学家在SRS弯曲磁铁第7.2号站所做的工作(赫利韦尔,1984年)。在XFEL的未来发展中,这些软X射线波长也可以被利用,从而在一定程度上减轻对XFEL复杂性和成本的要求。因此,例如通过使用4 Å XFEL辐射并采用背散射几何面积探测器,可以对单分子分子变换进行采样,达到2 Å的空间分辨率,原则上这足以用于蛋白质模型的精修(苗等人,1999年)。与此同时,苗等人(2003年)报告了首次使用波长为2 Å的相干X射线对完整大肠杆菌细菌的衍射图案进行实验记录,分辨率为30 nm,并构建了实空间图像。新的单粒子X射线衍射成像时代已经开始。