Suppr超能文献

EMMA:一个用于一致存储和高效分析微阵列数据的平台。

EMMA: a platform for consistent storage and efficient analysis of microarray data.

作者信息

Dondrup Michael, Goesmann Alexander, Bartels Daniela, Kalinowski Jörn, Krause Lutz, Linke Burkhard, Rupp Oliver, Sczyrba Alexander, Pühler Alfred, Meyer Folker

机构信息

Center for Genome Research, Bielefeld University, D-33594 Bielefeld, Germany.

出版信息

J Biotechnol. 2003 Dec 19;106(2-3):135-46. doi: 10.1016/j.jbiotec.2003.08.010.

Abstract

As a high throughput technique, microarray experiments produce large data sets, consisting of measured data, laboratory protocols, and experimental settings. We have implemented the open source platform EMMA to store and analyze these data. The system provides automated pipelines for data processing and has a modular architecture that can be easily extended. EMMA features detailed reports about spots and their corresponding measurements. In addition to routine data analysis algorithms, the system can be integrated with other components that contain additional data sources (e.g. genome annotation systems).

摘要

作为一种高通量技术,微阵列实验会产生由测量数据、实验室方案和实验设置组成的大型数据集。我们已经实现了开源平台EMMA来存储和分析这些数据。该系统提供用于数据处理的自动化管道,并且具有易于扩展的模块化架构。EMMA具有关于斑点及其相应测量的详细报告。除了常规数据分析算法外,该系统还可以与包含其他数据源的其他组件(例如基因组注释系统)集成。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验