Geiger Otto, Sohlenkamp Christian, Vera-Cruz Diana, Medeot Daniela B, Martínez-Aguilar Lourdes, Sahonero-Canavesi Diana X, Weidner Stefan, Pühler Alfred, López-Lara Isabel M
Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico.
Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Bielefeld, Germany.
Front Plant Sci. 2021 Jul 23;12:678976. doi: 10.3389/fpls.2021.678976. eCollection 2021.
contains the negatively charged phosphatidylglycerol and cardiolipin as well as the zwitterionic phosphatidylethanolamine (PE) and phosphatidylcholine (PC) as major membrane phospholipids. In previous studies we had isolated mutants that lack PE or PC. Although mutants deficient in PE are able to form nitrogen-fixing nodules on alfalfa host plants, mutants lacking PC cannot sustain development of any nodules on host roots. Transcript profiles of mutants unable to form PE or PC are distinct; they differ from each other and they are different from the wild type profile. For example, a PC-deficient mutant of shows an increase of transcripts that encode enzymes required for succinoglycan biosynthesis and a decrease of transcripts required for flagellum formation. Indeed, a PC-deficient mutant is unable to swim and overproduces succinoglycan. Some suppressor mutants, that regain swimming and form normal levels of succinoglycan, are altered in the ExoS sensor. Our findings suggest that the lack of PC in the sinorhizobial membrane activates the ExoS/ChvI two-component regulatory system. ExoS/ChvI constitute a molecular switch in for changing from a free-living to a symbiotic life style. The periplasmic repressor protein ExoR controls ExoS/ChvI function and it is thought that proteolytic ExoR degradation would relieve repression of ExoS/ChvI thereby switching on this system. However, as ExoR levels are similar in wild type, PC-deficient mutant and suppressor mutants, we propose that lack of PC in the bacterial membrane provokes directly a conformational change of the ExoS sensor and thereby activation of the ExoS/ChvI two-component system.
含有带负电荷的磷脂酰甘油和心磷脂,以及两性离子磷脂酰乙醇胺(PE)和磷脂酰胆碱(PC)作为主要的膜磷脂。在之前的研究中,我们分离出了缺乏PE或PC的突变体。尽管缺乏PE的突变体能够在苜蓿宿主植物上形成固氮根瘤,但缺乏PC的突变体无法维持宿主根上任何根瘤的发育。无法形成PE或PC的突变体的转录谱是不同的;它们彼此不同,也与野生型谱不同。例如,一种PC缺陷型突变体显示出编码琥珀聚糖生物合成所需酶的转录本增加,而鞭毛形成所需的转录本减少。实际上,PC缺陷型突变体无法游动并过量产生琥珀聚糖。一些恢复游动并形成正常水平琥珀聚糖的抑制突变体,其ExoS传感器发生了改变。我们的研究结果表明,中华根瘤菌膜中PC的缺乏激活了ExoS/ChvI双组分调节系统。ExoS/ChvI构成了中华根瘤菌从自由生活方式转变为共生生活方式的分子开关。周质阻遏蛋白ExoR控制ExoS/ChvI的功能,据认为ExoR的蛋白水解降解会解除对ExoS/ChvI的抑制,从而开启这个系统。然而,由于野生型、PC缺陷型突变体和抑制突变体中的ExoR水平相似,我们提出细菌膜中PC的缺乏直接引发了ExoS传感器的构象变化,从而激活了ExoS/ChvI双组分系统。