Suppr超能文献

用于迭代图像估计的统一噪声分析。

A unified noise analysis for iterative image estimation.

作者信息

Qi Jinyi

机构信息

Department of Nuclear Medicine and Functional Imaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

出版信息

Phys Med Biol. 2003 Nov 7;48(21):3505-19. doi: 10.1088/0031-9155/48/21/004.

Abstract

Iterative image estimation methods have been widely used in emission tomography. Accurate estimation of the uncertainty of the reconstructed images is essential for quantitative applications. While both iteration-based noise analysis and fixed-point noise analysis have been developed, current iteration-based results are limited to only a few algorithms that have an explicit multiplicative update equation and some may not converge to the fixed-point result. This paper presents a theoretical noise analysis that is applicable to a wide range of preconditioned gradient-type algorithms. Under a certain condition, the proposed method does not require an explicit expression of the preconditioner. By deriving the fixed-point expression from the iteration-based result, we show that the proposed iteration-based noise analysis is consistent with fixed-point analysis. Examples in emission tomography and transmission tomography are shown. The results are validated using Monte Carlo simulations.

摘要

迭代图像估计方法已广泛应用于发射断层扫描。准确估计重建图像的不确定性对于定量应用至关重要。虽然已经开发了基于迭代的噪声分析和定点噪声分析,但目前基于迭代的结果仅限于少数具有显式乘法更新方程的算法,并且有些可能不会收敛到定点结果。本文提出了一种适用于广泛的预处理梯度型算法的理论噪声分析。在一定条件下,该方法不需要预处理器的显式表达式。通过从基于迭代的结果中推导定点表达式,我们表明所提出的基于迭代的噪声分析与定点分析是一致的。给出了发射断层扫描和透射断层扫描的示例。结果通过蒙特卡罗模拟进行了验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验