Suppr超能文献

期望最大化(EM)算法的噪声特性:I. 理论

Noise properties of the EM algorithm: I. Theory.

作者信息

Barrett H H, Wilson D W, Tsui B M

机构信息

Department of Radiology, University of Arizona, Tucson, AZ, USA.

出版信息

Phys Med Biol. 1994 May;39(5):833-46. doi: 10.1088/0031-9155/39/5/004.

Abstract

The expectation-maximization (EM) algorithm is an important tool for maximum-likelihood (ML) estimation and image reconstruction, especially in medical imaging. It is a non-linear iterative algorithm that attempts to find the ML estimate of the object that produced a data set. The convergence of the algorithm and other deterministic properties are well established, but relatively little is known about how noise in the data influences noise in the final reconstructed image. In this paper we present a detailed treatment of these statistical properties. The specific application we have in mind is image reconstruction in emission tomography, but the results are valid for any application of the EM algorithm in which the data set can be described by Poisson statistics. We show that the probability density function for the grey level at a pixel in the image is well approximated by a log-normal law. An expression is derived for the variance of the grey level and for pixel-to-pixel covariance. The variance increases rapidly with iteration number at first, but eventually saturates as the ML estimate is approached. Moreover, the variance at any iteration number has a factor proportional to the square of the mean image (though other factors may also depend on the mean image), so a map of the standard deviation resembles the object itself. Thus low-intensity regions of the image tend to have low noise. By contrast, linear reconstruction methods, such as filtered back-projection in tomography, show a much more global noise pattern, with high-intensity regions of the object contributing to noise at rather distant low-intensity regions. The theoretical results of this paper depend on two approximations, but in the second paper in this series we demonstrate through Monte Carlo simulation that the approximations are justified over a wide range of conditions in emission tomography. The theory can, therefore, be used as a basis for calculation of objective figures of merit for image quality.

摘要

期望最大化(EM)算法是最大似然(ML)估计和图像重建的重要工具,在医学成像领域尤为如此。它是一种非线性迭代算法,旨在找到产生数据集的对象的最大似然估计。该算法的收敛性和其他确定性属性已得到充分确立,但对于数据中的噪声如何影响最终重建图像中的噪声,人们了解得相对较少。在本文中,我们对这些统计属性进行了详细探讨。我们所考虑的具体应用是发射断层扫描中的图像重建,但结果对于EM算法在任何数据集可由泊松统计描述的应用中都是有效的。我们表明,图像中像素灰度级的概率密度函数可以很好地用对数正态分布来近似。我们推导了灰度级方差和像素间协方差的表达式。方差起初随着迭代次数迅速增加,但随着接近最大似然估计最终会饱和。此外,在任何迭代次数下,方差都有一个与平均图像平方成正比的因子(尽管其他因子也可能取决于平均图像),因此标准差图类似于对象本身。这样,图像的低强度区域往往具有低噪声。相比之下,线性重建方法,如断层扫描中的滤波反投影,显示出更为全局的噪声模式,对象的高强度区域会在相当远的低强度区域产生噪声。本文的理论结果依赖于两个近似,但在本系列的第二篇论文中,我们通过蒙特卡罗模拟证明,在发射断层扫描的广泛条件下,这些近似是合理的。因此,该理论可作为计算图像质量客观指标的基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验