Hwang DoSik, Lee Jeong-Whan, Zeng Gengsheng L
School of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea.
School of Biomedical Engineering, College of Biomedical and Life Science, Konkuk University, Chung Ju, Korea.
Int J Imaging Syst Technol. 2011 Sep;21(3):247-252. doi: 10.1002/ima.20290. Epub 2011 Aug 24.
Described herein are the advantages of using sub-sinograms for single photon emission computed tomography image reconstruction. A sub-sinogram is a sinogram acquired with an entire data acquisition protocol, but in a fraction of the total acquisition time. A total-sinogram is the summation of all sub-sinograms. Images can be reconstructed from the total-sinogram or from sub-sinograms and then be summed to produce the final image. For a linear reconstruction method such as the filtered backprojection algorithm, there is no advantage of using sub-sinograms. However, for nonlinear methods such as the maximum likelihood (ML) expectation maximization algorithm, the use of sub-sinograms can produce better results. The ML estimator is a random variable, and one ML reconstruction is one realization of the random variable. The ML solution is better obtained via the mean value of the random variable of the ML estimator. Sub-sinograms can provide many realizations of the ML estimator. We show that the use of sub-sinograms can produce better estimations for the ML solution than can the total-sinogram and can also reduce the statistical noise within iteratively reconstructed images.
本文介绍了在单光子发射计算机断层扫描图像重建中使用子正弦图的优势。子正弦图是通过完整的数据采集协议获取的正弦图,但采集时间仅为总采集时间的一部分。总正弦图是所有子正弦图的总和。图像既可以从总正弦图重建,也可以从子正弦图重建,然后将重建后的图像相加得到最终图像。对于诸如滤波反投影算法之类的线性重建方法,使用子正弦图并无优势。然而,对于诸如最大似然(ML)期望最大化算法之类的非线性方法,使用子正弦图可以产生更好的结果。ML估计器是一个随机变量,一次ML重建是该随机变量的一次实现。通过ML估计器随机变量的均值能更好地获得ML解。子正弦图可以提供ML估计器的多次实现。我们表明,与总正弦图相比,使用子正弦图对ML解能产生更好的估计,并且还可以减少迭代重建图像中的统计噪声。