Hanko Valoran P, Rohrer Jeffrey S
Dionex Corp, 500 Mercury Drive, Sunnyvale, CA 94088-3603, USA.
Anal Biochem. 2004 Jan 1;324(1):29-38. doi: 10.1016/j.ab.2003.09.028.
Cell culture and fermentation broth media are used in the manufacture of biotherapeutics and many other biological materials. Characterizing the amino acid composition in cell culture and fermentation broth media is important because deficiencies in these nutrients can reduce desired yields or alter final product quality. Anion-exchange (AE) chromatography using sodium hydroxide (NaOH) and sodium acetate gradients, coupled with integrated pulsed amperometric detection (IPAD), determines amino acids without sample derivatization. AE-IPAD also detects carbohydrates, glycols, and sugar alcohols. The presence of these compounds, often at high concentrations in cell culture and fermentation broth media, can complicate amino acid determinations. To determine whether these samples can be analyzed without sample preparation, we studied the effects of altering and extending the initial NaOH eluent concentration on the retention of 42 different carbohydrates and related compounds, 30 amino acids and related compounds, and 3 additional compounds. We found that carbohydrate retention is impacted in a manner different from that of amino acid retention by a change in [NaOH]. We used this selectivity difference to design amino acid determinations of diluted cell culture and fermentation broth media, including Bacto yeast extract-peptone-dextrose (yeast culture medium) broth, Luria-Bertani (bacterial culture medium) broth, and minimal essential medium and serum-free protein-free hybridoma medium (mammalian cell culture media). These media were selected as representatives for both prokaryotic and eukaryotic culture systems capable of challenging the analytical technique presented in this paper. Glucose up to 10mM (0.2%, w/w) did not interfere with the chromatography, or decrease recovery greater than 20%, for the common amino acids arginine, lysine, alanine, threonine, glycine, valine, serine, proline, isoleucine, leucine, methionine, histidine, phenylalanine, glutamate, aspartate, cystine, and tyrosine.
细胞培养基和发酵液培养基用于生物治疗药物及许多其他生物材料的生产。表征细胞培养基和发酵液培养基中的氨基酸组成很重要,因为这些营养成分的缺乏会降低预期产量或改变最终产品质量。使用氢氧化钠(NaOH)和醋酸钠梯度的阴离子交换(AE)色谱法,结合积分脉冲安培检测(IPAD),无需样品衍生化即可测定氨基酸。AE-IPAD还能检测碳水化合物、二醇和糖醇。这些化合物通常在细胞培养基和发酵液培养基中浓度较高,它们的存在会使氨基酸测定变得复杂。为了确定这些样品是否可以不经样品制备进行分析,我们研究了改变和延长初始NaOH洗脱液浓度对42种不同碳水化合物及相关化合物、30种氨基酸及相关化合物和另外3种化合物保留情况的影响。我们发现,[NaOH]的变化对碳水化合物保留的影响方式与对氨基酸保留的影响方式不同。我们利用这种选择性差异设计了对稀释的细胞培养基和发酵液培养基的氨基酸测定方法,包括细菌酵母提取物-蛋白胨-葡萄糖(酵母培养基)肉汤、Luria-Bertani(细菌培养基)肉汤、最低限度基本培养基和无血清无蛋白杂交瘤培养基(哺乳动物细胞培养基)。选择这些培养基作为原核和真核培养系统的代表,它们能够对本文介绍的分析技术构成挑战。对于常见氨基酸精氨酸、赖氨酸、丙氨酸、苏氨酸、甘氨酸、缬氨酸、丝氨酸、脯氨酸、异亮氨酸、亮氨酸、蛋氨酸、组氨酸、苯丙氨酸、谷氨酸、天冬氨酸、胱氨酸和酪氨酸,高达10mM(0.2%,w/w)的葡萄糖不会干扰色谱分析,也不会使回收率降低超过20%。