Suppr超能文献

Preconditioning potentiates redox signaling and converts death signal into survival signal.

作者信息

Das Dipak K, Maulik Nilanjana

机构信息

Cardiovascular Research Center, University of Connecticut School of Medicine, Farmington, CT 06030-1110, USA.

出版信息

Arch Biochem Biophys. 2003 Dec 15;420(2):305-11. doi: 10.1016/j.abb.2003.09.023.

Abstract

Reactive oxygen species (ROS) play a crucial role in the pathophysiology of ischemic heart disease by causing cardiac dysfunction and cell death. Several redox-sensitive anti- and pro-apoptotic transcription factors including NFkappaB and AP-1 progressively and steadily increase in the heart as a function of the duration of ischemia and reperfusion. When the heart is preconditioned to ischemic stress by repeated short-term ischemia and reperfusion, NFkappaB remains high while AP-1 is lowered to almost baseline value. The anti-apoptotic gene Bcl-2 is downregulated in the ischemic/reperfused heart, while it is upregulated in the adapted myocardium. Cardioprotective abilities of the preconditioning are abolished when heart is pre-perfused with N-acetyl cysteine, a scavenger for ROS, suggesting the role of ROS in redox signaling. Mammalian heart is protected by several defense systems which include among others, redox-regulated protein, thioredoxin. Reperfusion of ischemic myocardium results in the downregulation of thioredoxin 1 (Trx 1) expression, which was upregulated in the preconditioned myocardium. The increased expression of Trx 1 is completely blocked with an inhibitor of Trx 1, CDDP, which also abolished cardioprotection afforded by ischemic adaptation. The cardioprotective role of Trx 1 is confirmed further with transgenic mouse hearts overexpressing Trx 1. The Trx 1 mouse hearts displayed significantly improved post-ischemic ventricular recovery and reduced myocardial infarct size and apoptosis as compared to the corresponding wild-type mouse hearts. Taken together, preconditioning appears to potentiate redox signaling, which converts the "death signal" into "survival signal."

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验