Parker David
Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, United Kingdom.
J Neurosci. 2003 Dec 3;23(35):11085-93. doi: 10.1523/JNEUROSCI.23-35-11085.2003.
The analysis of synaptic properties in neural networks has focused on the properties of individual synapses. As a result, little is known of how neural assemblies arise from the connectivity and functional properties of different classes of network neurons. I examined synaptic properties in the lamprey locomotor network. Here I show that, in addition to their monosynaptic inputs to motor neurons, a proportion of the excitatory network interneurons (EINs) evoke an activity-dependent disynaptic feedforward inhibitory input. Connections from the excitatory interneurons to small ipsilateral inhibitory interneurons were found that could account for the feedforward inhibition. Both synapses in the disynaptic pathway exhibited activity-dependent facilitation during physiologically relevant spike trains, which could contribute to the delayed, activity-dependent development of the feedforward IPSP. Although it was not as common as the feedforward inhibition, the excitatory interneurons could also evoke feedforward excitatory inputs in motor neurons. EIN inputs to motor neurons usually depress during spike trains. In connections in which a delayed IPSP occurred, blocking the feedforward inhibition in motor neurons or preventing the activation of the disynaptic pathway abolished the depression of the direct EPSP during the spike train and could reveal an underlying facilitation. The feedforward inhibition thus heterosynaptically depressed the direct excitatory input to motor neurons. Activity-dependent heterosynaptic effects acting within network cellular assemblies can thus influence the integration of synaptic inputs in motor neurons. This could help to terminate ipsilateral motor neuron spiking during network activity.
神经网络中突触特性的分析主要集中在单个突触的特性上。因此,对于神经集合如何从不同类型的网络神经元的连接性和功能特性中产生,我们知之甚少。我研究了七鳃鳗运动网络中的突触特性。在这里我表明,除了对运动神经元的单突触输入外,一部分兴奋性网络中间神经元(EINs)会引发一种活动依赖性的双突触前馈抑制输入。发现从兴奋性中间神经元到同侧小抑制性中间神经元的连接可以解释这种前馈抑制。在生理相关的脉冲序列中,双突触通路中的两个突触都表现出活动依赖性的易化作用,这可能有助于前馈抑制性突触后电位(IPSP)的延迟、活动依赖性发展。虽然不像前馈抑制那么常见,但兴奋性中间神经元也可以在运动神经元中引发前馈兴奋性输入。EIN对运动神经元的输入在脉冲序列中通常会衰减。在出现延迟IPSP的连接中,阻断运动神经元中的前馈抑制或阻止双突触通路的激活会消除脉冲序列期间直接兴奋性突触后电位(EPSP)的衰减,并可能揭示潜在的易化作用。因此,前馈抑制通过异突触作用抑制了对运动神经元的直接兴奋性输入。网络细胞集合内起作用的活动依赖性异突触效应因此可以影响运动神经元中突触输入的整合。这可能有助于在网络活动期间终止同侧运动神经元的放电。