Multiclass classification of microarray data with repeated measurements: application to cancer.
作者信息
Yeung Ka Yee, Bumgarner Roger E
机构信息
Department of Microbiology, Box 358070, University of Washington, Seattle, WA 98195, USA.
出版信息
Genome Biol. 2003;4(12):R83. doi: 10.1186/gb-2003-4-12-r83. Epub 2003 Nov 24.
Prediction of the diagnostic category of a tissue sample from its gene-expression profile and selection of relevant genes for class prediction have important applications in cancer research. We have developed the uncorrelated shrunken centroid (USC) and error-weighted, uncorrelated shrunken centroid (EWUSC) algorithms that are applicable to microarray data with any number of classes. We show that removing highly correlated genes typically improves classification results using a small set of genes.
相似文献
J Biomed Inform. 2009-2
Genomics Proteomics Bioinformatics. 2008-6
BMC Bioinformatics. 2004-6-4
Adv Exp Med Biol. 2011
BMC Bioinformatics. 2004-12-9
IEEE/ACM Trans Comput Biol Bioinform. 2007
BMC Bioinformatics. 2004-3-3
引用本文的文献
Ann Surg Oncol. 2022-3
Adv Bioinformatics. 2015
IEEE Trans Med Imaging. 2014-1
本文引用的文献
Genome Biol. 2003
Nucleic Acids Res. 2003-2-15
Genome Biol. 2002
Proc Natl Acad Sci U S A. 2002-5-14
Bioinformatics. 2002-1