Yeung Ka Yee, Bumgarner Roger E
Department of Microbiology, Box 358070, University of Washington, Seattle, WA 98195, USA.
Genome Biol. 2003;4(12):R83. doi: 10.1186/gb-2003-4-12-r83. Epub 2003 Nov 24.
Prediction of the diagnostic category of a tissue sample from its gene-expression profile and selection of relevant genes for class prediction have important applications in cancer research. We have developed the uncorrelated shrunken centroid (USC) and error-weighted, uncorrelated shrunken centroid (EWUSC) algorithms that are applicable to microarray data with any number of classes. We show that removing highly correlated genes typically improves classification results using a small set of genes.
根据组织样本的基因表达谱预测其诊断类别以及选择用于类别预测的相关基因在癌症研究中具有重要应用。我们开发了不相关收缩质心(USC)算法和误差加权不相关收缩质心(EWUSC)算法,它们适用于具有任意数量类别的微阵列数据。我们表明,去除高度相关的基因通常会使用少量基因提高分类结果。