Suppr超能文献

SCoRS——一种基于稳定性的神经影像学特征选择与映射方法[已修正]

SCoRS--A Method Based on Stability for Feature Selection and Mapping inNeuroimaging [corrected].

作者信息

Rondina Jane M, Hahn Tim, de Oliveira Leticia, Marquand Andre F, Dresler Thomas, Leitner Thomas, Fallgatter Andreas J, Shawe-Taylor John, Mourao-Miranda Janaina

出版信息

IEEE Trans Med Imaging. 2014 Jan;33(1):85-98. doi: 10.1109/TMI.2013.2281398. Epub 2013 Sep 11.

Abstract

Feature selection (FS) methods play two important roles in the context of neuroimaging based classification: potentially increase classification accuracy by eliminating irrelevant features from the model and facilitate interpretation by identifying sets of meaningful features that best discriminate the classes. Although the development of FS techniques specifically tuned for neuroimaging data is an active area of research, up to date most of the studies have focused on finding a subset of features that maximizes accuracy. However, maximizing accuracy does not guarantee reliable interpretation as similar accuracies can be obtained from distinct sets of features. In the current paper we propose a new approach for selecting features: SCoRS (survival count on random subsamples) based on a recently proposed Stability Selection theory. SCoRS relies on the idea of choosing relevant features that are stable under data perturbation. Data are perturbed by iteratively sub-sampling both features (subspaces) and examples. We demonstrate the potential of the proposed method in a clinical application to classify depressed patients versus healthy individuals based on functional magnetic resonance imaging data acquired during visualization of happy faces.

摘要

特征选择(FS)方法在基于神经影像学的分类中发挥着两个重要作用:通过从模型中消除无关特征,有可能提高分类准确性,并通过识别最能区分不同类别的有意义特征集来促进解释。尽管专门针对神经影像学数据调整的FS技术的开发是一个活跃的研究领域,但到目前为止,大多数研究都集中在寻找能使准确性最大化的特征子集上。然而,最大化准确性并不能保证可靠的解释,因为从不同的特征集中可以获得相似的准确性。在本文中,我们基于最近提出的稳定性选择理论,提出了一种新的特征选择方法:随机子样本生存计数(SCoRS)。SCoRS依赖于在数据扰动下选择稳定的相关特征的思想。通过对特征(子空间)和示例进行迭代子采样来扰动数据。我们在一个临床应用中展示了所提出方法的潜力,该应用基于在观看快乐面孔时获取的功能磁共振成像数据对抑郁症患者和健康个体进行分类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d52/4576737/5eba38c8b5b8/emss-65065-f0001.jpg

相似文献

5
Mapping brains on grids of features for schizophrenia analysis.基于特征网格绘制大脑图谱以进行精神分裂症分析。
Med Image Comput Comput Assist Interv. 2014;17(Pt 2):805-12. doi: 10.1007/978-3-319-10470-6_100.
7
Discovering structure in the space of activation profiles in fMRI.在功能磁共振成像的激活图谱空间中发现结构。
Med Image Comput Comput Assist Interv. 2008;11(Pt 1):1016-24. doi: 10.1007/978-3-540-85988-8_121.
10
Anaesthetic use in animal models for neuroimaging.用于神经成像的动物模型中的麻醉剂使用。
Neuroimage. 2007 Oct 15;38(1):1-2; discussion 3-4. doi: 10.1016/j.neuroimage.2007.04.022. Epub 2007 Apr 19.

引用本文的文献

1
Stable multivariate lesion symptom mapping.稳定的多变量病变症状映射
Apert Neuro. 2024;4. doi: 10.52294/001c.117311. Epub 2024 Jun 7.
2
Groupwise structural sparsity for discriminative voxels identification.用于鉴别体素识别的逐组结构稀疏性
Front Neurosci. 2023 Sep 7;17:1247315. doi: 10.3389/fnins.2023.1247315. eCollection 2023.
6
Towards a brain-based predictome of mental illness.迈向基于大脑的精神疾病预测组学。
Hum Brain Mapp. 2020 Aug 15;41(12):3468-3535. doi: 10.1002/hbm.25013. Epub 2020 May 6.

本文引用的文献

4
Diagnostic neuroimaging across diseases.跨疾病的诊断神经影像学。
Neuroimage. 2012 Jun;61(2):457-63. doi: 10.1016/j.neuroimage.2011.11.002. Epub 2011 Nov 7.
5
Voxelwise meta-analysis of gray matter reduction in major depressive disorder.基于体素的重性抑郁障碍患者脑灰质体积减少的荟萃分析。
Prog Neuropsychopharmacol Biol Psychiatry. 2012 Jan 10;36(1):11-6. doi: 10.1016/j.pnpbp.2011.09.014. Epub 2011 Oct 7.
8
ODVBA: optimally-discriminative voxel-based analysis.ODVBA:最优判别体素分析。
IEEE Trans Med Imaging. 2011 Aug;30(8):1441-54. doi: 10.1109/TMI.2011.2114362. Epub 2011 Feb 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验