Gudelj I, White K A J, Britton N F
Biomathematics Unit, Rothamsted Research, Harpenden AL5 2JQ, UK.
Bull Math Biol. 2004 Jan;66(1):91-108. doi: 10.1016/S0092-8240(03)00075-2.
The effects of spatial movements of infected and susceptible individuals on disease dynamics is not well understood. Empirical studies on the spatial spread of disease and behaviour of infected individuals are few and theoretical studies may be useful to explore different scenarios. Hence due to lack of detail in empirical studies, theoretical models have become necessary tools in investigating the disease influence in host-pathogen systems. In this paper we developed and analysed a spatially explicit model of two interacting social groups of animals of the same species. We investigated how the movement scenarios of susceptible and infected individuals together with the between-group contact parameter affect the survival rate of susceptible individuals in each group. This work can easily be applied to various host-pathogen systems. We define bounds on the number of susceptibles which avoid infection once the disease has died out as a function of the initial conditions and other model parameters. For example, once disease has passed through the populations, a larger diffusion coefficient for each group can result in higher population levels when there is no between-group interaction but in lower levels when there is between-group interaction. Numerical simulations are used to demonstrate these bounds and behaviours and to describe the different outcomes in ecological terms.
受感染个体和易感个体的空间移动对疾病动态的影响尚未得到充分理解。关于疾病空间传播和受感染个体行为的实证研究很少,理论研究可能有助于探索不同的情况。因此,由于实证研究缺乏细节,理论模型已成为研究宿主 - 病原体系统中疾病影响的必要工具。在本文中,我们开发并分析了一个关于同一物种的两个相互作用社会群体动物的空间明确模型。我们研究了易感个体和受感染个体的移动情况以及群体间接触参数如何影响每个群体中易感个体的存活率。这项工作可以很容易地应用于各种宿主 - 病原体系统。我们定义了易感个体数量的界限,一旦疾病灭绝,该界限可作为初始条件和其他模型参数的函数来避免感染。例如,一旦疾病在种群中传播过后,当没有群体间相互作用时,每个群体较大的扩散系数会导致更高的种群水平,但当存在群体间相互作用时则会导致较低的种群水平。数值模拟用于证明这些界限和行为,并从生态学角度描述不同的结果。