Suppr超能文献

用于理解疫情传播的机制性传播模型。

Mechanistic movement models to understand epidemic spread.

作者信息

Fofana Abdou Moutalab, Hurford Amy

机构信息

Department of Biology, Memorial University of Newfoundland, St John's, Newfoundland and Labrador, Canada

Department of Biology, Memorial University of Newfoundland, St John's, Newfoundland and Labrador, Canada.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2017 May 5;372(1719). doi: 10.1098/rstb.2016.0086.

Abstract

An overlooked aspect of disease ecology is considering how and why animals come into contact with one and other resulting in disease transmission. Mathematical models of disease spread frequently assume mass-action transmission, justified by stating that susceptible and infectious hosts mix readily, and foregoing any detailed description of host movement. Numerous recent studies have recorded, analysed and modelled animal movement. These movement models describe how animals move with respect to resources, conspecifics and previous movement directions and have been used to understand the conditions for the occurrence and the spread of infectious diseases when hosts perform a type of movement. Here, we summarize the effect of the different types of movement on the threshold conditions for disease spread. We identify gaps in the literature and suggest several promising directions for future research. The mechanistic inclusion of movement in epidemic models may be beneficial for the following two reasons. Firstly, the estimation of the transmission coefficient in an epidemic model is possible because animal movement data can be used to estimate the rate of contacts between conspecifics. Secondly, unsuccessful transmission events, where a susceptible host contacts an infectious host but does not become infected can be quantified. Following an outbreak, this enables disease ecologists to identify 'near misses' and to explore possible alternative epidemic outcomes given shifts in ecological or immunological parameters.This article is part of the themed issue 'Opening the black box: re-examining the ecology and evolution of parasite transmission'.

摘要

疾病生态学中一个被忽视的方面是考虑动物如何以及为何相互接触从而导致疾病传播。疾病传播的数学模型常常假定为质量作用传播,理由是易感染宿主和感染宿主容易混合,并且省略了对宿主移动的任何详细描述。最近大量研究记录、分析并模拟了动物的移动。这些移动模型描述了动物如何相对于资源、同种个体以及先前的移动方向进行移动,并已被用于理解当宿主进行某种移动时传染病发生和传播的条件。在此,我们总结了不同类型的移动对疾病传播阈值条件的影响。我们找出了文献中的空白,并提出了几个未来研究的有前景的方向。在流行病模型中机械地纳入移动可能出于以下两个原因而有益。首先,由于动物移动数据可用于估计同种个体之间的接触率,所以在流行病模型中估计传播系数是可能的。其次,可以对不成功的传播事件进行量化,即易感染宿主接触感染宿主但未被感染的情况。在一次疫情爆发之后,这能使疾病生态学家识别“未遂事件”,并在生态或免疫参数发生变化时探索可能的其他疫情结果。本文是主题为“打开黑匣子:重新审视寄生虫传播的生态学和进化”这一特刊的一部分。

相似文献

1
Mechanistic movement models to understand epidemic spread.
Philos Trans R Soc Lond B Biol Sci. 2017 May 5;372(1719). doi: 10.1098/rstb.2016.0086.
2
Breaking beta: deconstructing the parasite transmission function.
Philos Trans R Soc Lond B Biol Sci. 2017 May 5;372(1719). doi: 10.1098/rstb.2016.0084.
3
Going through the motions: incorporating movement analyses into disease research.
Ecol Lett. 2018 Apr;21(4):588-604. doi: 10.1111/ele.12917. Epub 2018 Feb 14.
4
Infections on the move: how transient phases of host movement influence disease spread.
Proc Biol Sci. 2017 Dec 20;284(1869). doi: 10.1098/rspb.2017.1807.
5
Transmission dynamics: critical questions and challenges.
Philos Trans R Soc Lond B Biol Sci. 2017 May 5;372(1719). doi: 10.1098/rstb.2016.0087.
6
Dynamic, spatial models of parasite transmission in wildlife: Their structure, applications and remaining challenges.
J Anim Ecol. 2018 May;87(3):559-580. doi: 10.1111/1365-2656.12761. Epub 2017 Oct 22.
7
Who acquires infection from whom and how? Disentangling multi-host and multi-mode transmission dynamics in the 'elimination' era.
Philos Trans R Soc Lond B Biol Sci. 2017 May 5;372(1719). doi: 10.1098/rstb.2016.0091.
8
InterSpread Plus: a spatial and stochastic simulation model of disease in animal populations.
Prev Vet Med. 2013 Apr 1;109(1-2):10-24. doi: 10.1016/j.prevetmed.2012.08.015. Epub 2012 Sep 17.
9
Modeling two strains of disease via aggregate-level infectivity curves.
J Math Biol. 2016 Apr;72(5):1195-224. doi: 10.1007/s00285-015-0910-3. Epub 2015 Jun 18.
10
Network frailty and the geometry of herd immunity.
Proc Biol Sci. 2006 Nov 7;273(1602):2743-8. doi: 10.1098/rspb.2006.3636.

引用本文的文献

1
The influence of social and spatial processes on the epidemiology of environmentally transmitted pathogens in wildlife: implications for management.
Philos Trans R Soc Lond B Biol Sci. 2024 Oct 21;379(1912):20220532. doi: 10.1098/rstb.2022.0532. Epub 2024 Sep 4.
3
Bacterial-viral interactions: a factor that facilitates transmission heterogeneities.
FEMS Microbes. 2022 Jun 2;3:xtac018. doi: 10.1093/femsmc/xtac018. eCollection 2022.
4
Ranavirus infection-induced avoidance behaviour in wood frog juveniles: do amphibians socially distance?
Biol Lett. 2022 Oct;18(10):20220359. doi: 10.1098/rsbl.2022.0359. Epub 2022 Oct 19.
6
The effects of geographical distributions of buildings and roads on the spatiotemporal spread of canine rabies: An individual-based modeling study.
PLoS Negl Trop Dis. 2022 May 10;16(5):e0010397. doi: 10.1371/journal.pntd.0010397. eCollection 2022 May.
7
Fine-scale heterogeneity in population density predicts wave dynamics in dengue epidemics.
Nat Commun. 2022 Feb 22;13(1):996. doi: 10.1038/s41467-022-28231-w.
8
The evolutionary maintenance of Lévy flight foraging.
PLoS Comput Biol. 2022 Jan 18;18(1):e1009490. doi: 10.1371/journal.pcbi.1009490. eCollection 2022 Jan.
9
Towards predicting COVID-19 infection waves: A random-walk Monte Carlo simulation approach.
Chaos Solitons Fractals. 2022 Mar;156:111785. doi: 10.1016/j.chaos.2021.111785. Epub 2022 Jan 10.
10
A new logistic growth model applied to COVID-19 fatality data.
Epidemics. 2021 Dec;37:100515. doi: 10.1016/j.epidem.2021.100515. Epub 2021 Oct 30.

本文引用的文献

1
Analyzing insect movement as a correlated random walk.
Oecologia. 1983 Feb;56(2-3):234-238. doi: 10.1007/BF00379695.
3
Caribou movement as a correlated random walk.
Oecologia. 2000 May;123(3):364-374. doi: 10.1007/s004420051023.
4
Liberating Lévy walk research from the shackles of optimal foraging.
Phys Life Rev. 2015 Sep;14:59-83. doi: 10.1016/j.plrev.2015.03.002. Epub 2015 Mar 20.
5
Social aggregation in pea aphids: experiment and random walk modeling.
PLoS One. 2013 Dec 20;8(12):e83343. doi: 10.1371/journal.pone.0083343. eCollection 2013.
6
Evidence of Levy walk foraging patterns in human hunter-gatherers.
Proc Natl Acad Sci U S A. 2014 Jan 14;111(2):728-33. doi: 10.1073/pnas.1318616111. Epub 2013 Dec 23.
8
How linear features alter predator movement and the functional response.
Interface Focus. 2012 Apr 6;2(2):205-16. doi: 10.1098/rsfs.2011.0086. Epub 2012 Jan 18.
9
Mathematical models for rabies.
Adv Virus Res. 2011;79:377-95. doi: 10.1016/B978-0-12-387040-7.00018-4.
10
Distinguishing technology from biology: a critical review of the use of GPS telemetry data in ecology.
Philos Trans R Soc Lond B Biol Sci. 2010 Jul 27;365(1550):2303-12. doi: 10.1098/rstb.2010.0087.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验