Suppr超能文献

Pattern differences between distributions of microregional myocardial flows in crystalloid- and blood-perfused rat hearts.

作者信息

Matsumoto Takeshi, Tachibana Hiroyuki, Asano Takahisa, Takemoto Mami, Ogasawara Yasuo, Umetani Keiji, Kajiya Fumihiko

机构信息

Department of Medical Engineering and Systems Cardiology, Kawasaki Medical School, Kurashiki, Okayama 701-0192 Japan.

出版信息

Am J Physiol Heart Circ Physiol. 2004 Apr;286(4):H1331-8. doi: 10.1152/ajpheart.00120.2003. Epub 2003 Dec 11.

Abstract

Regional myocardial flow distributions in Langendorff rat hearts under Tyrode and blood perfusion were assessed by tracer digital radiography (100-microm resolution). Flow distributions during baseline and maximal hyperemia following a 60-s flow cessation were evaluated by the coefficient of variation of regional flows (CV; related to global flow heterogeneity) and the correlation between adjacent regional flows (CA; inversely related to local flow randomness). These values were obtained for the original images (64(2) pixels) and for coarse-grained images (32(2), 16(2), and 8(2) blocks of nearby pixels). At a given point in time during baseline, both CV and CA were higher in blood (n = 7) than in Tyrode perfusion (n = 7) over all pixel aggregates (P < 0.05, two-way ANOVA). During the maximal hyperemia, CV and CA were still significantly higher in blood (n = 7) than in Tyrode perfusion (n = 7); however, these values decreased substantially in blood perfusion and the CV and CA differences became smaller than those at baseline accordingly. During basal blood perfusion, the 60-s average flow distribution (n = 7) showed a smaller CV and CA than those at a given point in time (P < 0.05, two-way ANOVA). Coronary flow reserve was significantly higher in blood than in Tyrode perfusion. In conclusion, the flow heterogeneity and the local flow similarity are both higher in blood than in Tyrode perfusion, probably due to the different degree of coronary tone preservation and the presence or absence of blood corpuscles. Under blood perfusion, temporal flow fluctuations over 60-s order are largely involved in shaping microregional flow distributions.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验