Pastore Donato, Di Pede Sergio, Passarella Salvatore
Dipartimento di Scienze Animali, Vegetali e dell'Ambiente, Facoltà di Agraria, Università del Molise, Via De Sanctis, 86100 Campobasso, Italy.
Plant Physiol. 2003 Dec;133(4):2029-39. doi: 10.1104/pp.103.028548. Epub 2003 Dec 11.
We investigated whether and how mitochondria from durum wheat (Triticum durum Desf.) and potato (Solanum tuberosum), isolated from etiolated shoots and a cell suspension culture, respectively, oxidize externally added NADH via the mitochondrial shuttles; in particular, we compared the shuttles and the external NADH dehydrogenase (NADH DHExt) with respect to their capacity to oxidize external NADH. We found that external NADH and NADPH can be oxidized via two separate DHExt, whereas under conditions in which the activities of NAD(P)H DHExt are largely prevented, NADH (but not NADPH) is oxidized in the presence of external malate (MAL) and MAL dehydrogenase, in a manner sensitive to several non-penetrant compounds according to the occurrence of the MAL/oxaloacetate (OAA) shuttle. In durum wheat mitochondria and potato cell mitochondria, the rate of NADH oxidation was limited by the rate of a novel carrier, the MAL/OAA antiporter, which is different from other carriers thought to transport OAA across the mitochondrial membrane. No NAD(P)H oxidation occurred arising from the MAL/Aspartate and the alpha-glycerophosphate/dihydroxyacetonphosphate shuttles. We determined the kinetic parameters of the enzymes and the antiporter involved in NADH oxidation, and, on the basis of a kinetic analysis, we showed that, at low physiological NADH concentrations, oxidation via the MAL/OAA shuttle occurred with a higher efficiency than that due to the NADH DHExt (about 100- and 10-fold at 1 microm NADH in durum wheat mitochondria and in potato cell mitochondria, respectively). The NADH DHExt contribution to NADH oxidation increased with increasing NADH concentration.
我们研究了分别从黄化苗和细胞悬浮培养物中分离得到的硬粒小麦(Triticum durum Desf.)和马铃薯(Solanum tuberosum)的线粒体是否以及如何通过线粒体穿梭系统氧化外源添加的NADH;特别是,我们比较了穿梭系统和外源NADH脱氢酶(NADH DHExt)氧化外源NADH的能力。我们发现外源NADH和NADPH可以通过两种不同的DHExt被氧化,而在NAD(P)H DHExt活性被大大抑制的条件下,NADH(而非NADPH)在存在外源苹果酸(MAL)和苹果酸脱氢酶的情况下被氧化,根据苹果酸/草酰乙酸(OAA)穿梭系统的存在情况,其氧化方式对几种非渗透性化合物敏感。在硬粒小麦线粒体和马铃薯细胞线粒体中,NADH的氧化速率受一种新型载体——苹果酸/草酰乙酸反向转运体的速率限制,该反向转运体与其他被认为能将草酰乙酸转运过线粒体膜的载体不同。苹果酸/天冬氨酸穿梭系统和α-磷酸甘油/磷酸二羟丙酮穿梭系统均未发生NAD(P)H氧化。我们测定了参与NADH氧化的酶和反向转运体的动力学参数,并基于动力学分析表明,在低生理NADH浓度下,通过苹果酸/草酰乙酸穿梭系统的氧化效率高于NADH DHExt(在硬粒小麦线粒体和马铃薯细胞线粒体中,1 μM NADH时分别约为100倍和10倍)。NADH DHExt对NADH氧化的贡献随NADH浓度的增加而增加。