Suppr超能文献

CONREAL:用于通过系统发育足迹法鉴定转录因子结合位点的保守调控元件锚定比对算法。

CONREAL: conserved regulatory elements anchored alignment algorithm for identification of transcription factor binding sites by phylogenetic footprinting.

作者信息

Berezikov Eugene, Guryev Victor, Plasterk Ronald H A, Cuppen Edwin

机构信息

Hubrecht Laboratory, Netherlands Institute for Developmental Biology, 3584 CT, Utrecht, The Netherlands.

出版信息

Genome Res. 2004 Jan;14(1):170-8. doi: 10.1101/gr.1642804. Epub 2003 Dec 12.

Abstract

Prediction of transcription-factor target sites in promoters remains difficult due to the short length and degeneracy of the target sequences. Although the use of orthologous sequences and phylogenetic footprinting approaches may help in the recognition of conserved and potentially functional sequences, correct alignment of the short transcription-factor binding sites can be problematic for established algorithms, especially when aligning more divergent species. Here, we report a novel phylogenetic footprinting approach, CONREAL, that uses biologically relevant information, that is, potential transcription-factor binding sites as represented by positional weight matrices, to establish anchors between orthologous sequences and to guide promoter sequence alignment. Comparison of the performance of CONREAL with the global alignment programs LAGAN and AVID using a reference data set, shows that CONREAL performs equally well for closely related species like rodents and human, and has a clear added value for aligning promoter elements of more divergent species like human and fish, as it identifies conserved transcription-factor binding sites that are not found by other methods. CONREAL is accessible via a Web interface at http://conreal.niob.knaw.nl/.

摘要

由于目标序列长度较短且具有简并性,预测启动子中转录因子的靶位点仍然很困难。尽管使用直系同源序列和系统发育足迹法可能有助于识别保守的和潜在的功能序列,但对于既定算法而言,短转录因子结合位点的正确比对可能存在问题,尤其是在比对分歧较大的物种时。在此,我们报告了一种新的系统发育足迹法CONREAL,它利用生物学相关信息,即由位置权重矩阵表示的潜在转录因子结合位点,在直系同源序列之间建立锚点并指导启动子序列比对。使用参考数据集将CONREAL与全局比对程序LAGAN和AVID的性能进行比较,结果表明,CONREAL在啮齿动物和人类等亲缘关系较近的物种中表现同样出色,并且在比对人类和鱼类等分歧较大物种的启动子元件时具有明显的附加价值,因为它能识别出其他方法未发现的保守转录因子结合位点。可通过网页界面http://conreal.niob.knaw.nl/访问CONREAL。

相似文献

2
CONREAL web server: identification and visualization of conserved transcription factor binding sites.
Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W447-50. doi: 10.1093/nar/gki378.
3
ConSite: web-based prediction of regulatory elements using cross-species comparison.
Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W249-52. doi: 10.1093/nar/gkh372.
4
Phylogeny based discovery of regulatory elements.
BMC Bioinformatics. 2006 May 22;7:266. doi: 10.1186/1471-2105-7-266.
5
Identification of conserved potentially regulatory sequences of the SRY gene from 10 different species of mammals.
Biochem Biophys Res Commun. 1998 Apr 17;245(2):370-7. doi: 10.1006/bbrc.1998.8441.
6
Exploring conservation of transcription factor binding sites with CONREAL.
Methods Mol Biol. 2007;395:437-48. doi: 10.1007/978-1-59745-514-5_27.
7
FOOTER: a web tool for finding mammalian DNA regulatory regions using phylogenetic footprinting.
Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W442-6. doi: 10.1093/nar/gki420.
8
Evaluating phylogenetic footprinting for human-rodent comparisons.
Bioinformatics. 2006 Feb 15;22(4):430-7. doi: 10.1093/bioinformatics/bti819. Epub 2005 Dec 6.
10
The NRF-1/alpha-PAL transcription factor regulates human E2F6 promoter activity.
Biochem J. 2004 Nov 1;383(Pt. 3):529-36. doi: 10.1042/BJ20040935.

引用本文的文献

1
Recent Development of Machine Learning Methods in Microbial Phosphorylation Sites.
Curr Genomics. 2020 Apr;21(3):194-203. doi: 10.2174/1389202921666200427210833.
3
Evolutionary Origins of Pax6 Control of Crystallin Genes.
Genome Biol Evol. 2017 Aug 1;9(8):2075-2092. doi: 10.1093/gbe/evx153.
4
Discriminating between HuR and TTP binding sites using the k-spectrum kernel method.
PLoS One. 2017 Mar 23;12(3):e0174052. doi: 10.1371/journal.pone.0174052. eCollection 2017.
5
Effects of C2ta genetic polymorphisms on MHC class II expression and autoimmune diseases.
Immunology. 2017 Apr;150(4):408-417. doi: 10.1111/imm.12692. Epub 2016 Dec 22.
6
Differential DNA repair underlies mutation hotspots at active promoters in cancer genomes.
Nature. 2016 Apr 14;532(7598):259-63. doi: 10.1038/nature17437.
7
Evolutionary Footprints of Short Tandem Repeats in Avian Promoters.
Sci Rep. 2016 Jan 14;6:19421. doi: 10.1038/srep19421.
8
BLSSpeller: exhaustive comparative discovery of conserved cis-regulatory elements.
Bioinformatics. 2015 Dec 1;31(23):3758-66. doi: 10.1093/bioinformatics/btv466. Epub 2015 Aug 8.
9
Purifying selection in deeply conserved human enhancers is more consistent than in coding sequences.
PLoS One. 2014 Jul 25;9(7):e103357. doi: 10.1371/journal.pone.0103357. eCollection 2014.

本文引用的文献

1
Comparative genomics: genome-wide analysis in metazoan eukaryotes.
Nat Rev Genet. 2003 Apr;4(4):251-62. doi: 10.1038/nrg1043.
2
LAGAN and Multi-LAGAN: efficient tools for large-scale multiple alignment of genomic DNA.
Genome Res. 2003 Apr;13(4):721-31. doi: 10.1101/gr.926603. Epub 2003 Mar 12.
3
Phylogenetic shadowing of primate sequences to find functional regions of the human genome.
Science. 2003 Feb 28;299(5611):1391-4. doi: 10.1126/science.1081331.
4
Whole genome human/mouse phylogenetic footprinting of potential transcription regulatory signals.
Pac Symp Biocomput. 2003:291-302. doi: 10.1142/9789812776303_0028.
5
Human-mouse alignments with BLASTZ.
Genome Res. 2003 Jan;13(1):103-7. doi: 10.1101/gr.809403.
6
AVID: A global alignment program.
Genome Res. 2003 Jan;13(1):97-102. doi: 10.1101/gr.789803.
7
TRANSFAC: transcriptional regulation, from patterns to profiles.
Nucleic Acids Res. 2003 Jan 1;31(1):374-8. doi: 10.1093/nar/gkg108.
8
Ensembl 2002: accommodating comparative genomics.
Nucleic Acids Res. 2003 Jan 1;31(1):38-42. doi: 10.1093/nar/gkg083.
9
The Bioperl toolkit: Perl modules for the life sciences.
Genome Res. 2002 Oct;12(10):1611-8. doi: 10.1101/gr.361602.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验