Caldwell Jason C, Miller Matthew M, Wing Susan, Soll David R, Eberl Daniel F
Department of Biological Sciences, University of Iowa, Iowa City, IA 52242, USA.
Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):16053-8. doi: 10.1073/pnas.2535546100. Epub 2003 Dec 12.
Rhythmic movements, such as peristaltic contraction, are initiated by output from central pattern generator (CPG) networks in the CNS. These oscillatory networks elicit locomotion in the absence of external sensory or descending inputs, but CPG circuits produce more directed and behaviorally relevant movement via peripheral nervous system (PNS) input. Drosophila melanogaster larval locomotion results from patterned muscle contractions moving stereotypically along the body segments, but without PNS feedback, contraction of body segments is uncoordinated. We have dissected the role of a subset of mechanosensory neurons in the larval PNS, the chordotonal organs (chos), in providing sensory feedback to the locomotor CPG circuit with dias (Dynamic Image Analysis System) software. We analyzed mutants carrying cho mutations including atonal, a cho proneural gene, beethoven, a cho cilia class mutant, smetana and touch-insensitive larva B, two axonemal mutants, and 5D10, a weak cho mutant. All cho mutants have defects in gross path morphology compared to controls. These mutants exhibit increased frequency and duration of turning (decision-making) and reduced duration of linear locomotion. Furthermore, cho mutants affect locomotor parameters, including reduced average speed, direction change, and persistence. Dias analysis of peristaltic waves indicates that mutants exhibit reduced average speed, positive flow and negative flow, and increased stride period. Thus, cho sensilla are major proprioceptive components that underlie touch sensitivity, locomotion, and peristaltic contraction by providing sensory feedback to the locomotor CPG circuit in larvae.
节律性运动,如蠕动收缩,由中枢神经系统(CNS)中的中枢模式发生器(CPG)网络输出启动。这些振荡网络在没有外部感觉或下行输入的情况下引发运动,但CPG回路通过外周神经系统(PNS)输入产生更具方向性和行为相关性的运动。黑腹果蝇幼虫的运动是由沿身体节段刻板移动的模式化肌肉收缩引起的,但没有PNS反馈时,身体节段的收缩是不协调的。我们使用dias(动态图像分析系统)软件剖析了幼虫PNS中机械感觉神经元的一个子集——弦音器官(chos)在为运动CPG回路提供感觉反馈中的作用。我们分析了携带chos突变的突变体,包括无调基因(一种chos原神经基因)、贝多芬(一种chos纤毛类突变体)、斯美塔纳和触觉不敏感幼虫B(两种轴丝突变体)以及5D10(一种弱chos突变体)。与对照相比,所有chos突变体在总体路径形态上都有缺陷。这些突变体表现出转弯(决策)的频率和持续时间增加,直线运动的持续时间减少。此外,chos突变体影响运动参数,包括平均速度降低、方向改变和持续性降低。对蠕动波的dias分析表明,突变体的平均速度、正向流动和反向流动降低,步幅周期增加。因此,chos感觉器是主要的本体感受成分,通过向幼虫的运动CPG回路提供感觉反馈,构成触觉敏感性、运动和蠕动收缩的基础。