Suppr超能文献

准静态近似下的磁导联场定理及其在真实容积导体脑磁图正向计算中的应用。

The magnetic lead field theorem in the quasi-static approximation and its use for magnetoencephalography forward calculation in realistic volume conductors.

作者信息

Nolte Guido

机构信息

Human Motor Control Section, NINDS, NIH, Bethesda, MD, USA.

出版信息

Phys Med Biol. 2003 Nov 21;48(22):3637-52. doi: 10.1088/0031-9155/48/22/002.

Abstract

The equation for the magnetic lead field for a given magnetoencephalography (MEG) channel is well known for arbitrary frequencies omega but is not directly applicable to MEG in the quasi-static approximation. In this paper we derive an equation for omega = 0 starting from the very definition of the lead field instead of using Helmholtz's reciprocity theorems. The results are (a) the transpose of the conductivity times the lead field is divergence-free, and (b) the lead field differs from the one in any other volume conductor by a gradient of a scalar function. Consequently, for a piecewise homogeneous and isotropic volume conductor, the lead field is always tangential at the outermost surface. Based on this theoretical result, we formulated a simple and fast method for the MEG forward calculation for one shell of arbitrary shape: we correct the corresponding lead field for a spherical volume conductor by a superposition of basis functions, gradients of harmonic functions constructed here from spherical harmonics, with coefficients fitted to the boundary conditions. The algorithm was tested for a prolate spheroid of realistic shape for which the analytical solution is known. For high order in the expansion, we found the solutions to be essentially exact and for reasonable accuracies much fewer multiplications are needed than in typical implementations of the boundary element methods. The generalization to more shells is straightforward.

摘要

对于给定的脑磁图(MEG)通道,磁导联场的方程在任意频率ω下都是已知的,但在准静态近似中并不直接适用于MEG。在本文中,我们从导联场的定义出发,而不是使用亥姆霍兹互易定理,推导出了ω = 0时的方程。结果是:(a)电导率与导联场的转置乘积是无散度的;(b)导联场与任何其他体积导体中的导联场相差一个标量函数的梯度。因此,对于分段均匀且各向同性的体积导体,导联场在最外表面总是切向的。基于这一理论结果,我们为任意形状的单层MEG正向计算制定了一种简单快速的方法:我们通过叠加基函数来校正球形体积导体的相应导联场,这里的基函数是由球谐函数构造的调和函数的梯度,其系数根据边界条件进行拟合。该算法针对已知解析解的实际形状的长椭球体进行了测试。对于展开式中的高阶项,我们发现解基本精确,并且与边界元方法的典型实现相比,在达到合理精度时所需的乘法运算要少得多。向更多层的推广很简单。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验