Suppr超能文献

利用脑磁图记录的静息脑网络中的自发振荡和功能耦合预测成年期的脑龄。

Predicting brain age across the adult lifespan with spontaneous oscillations and functional coupling in resting brain networks captured with magnetoencephalography.

作者信息

Hardy Samuel, Roberts Gill, Ventresca Matthew, Dunkley Benjamin T

机构信息

MYndspan Ltd, London, United Kingdom.

Neurosciences and Mental Health, Hospital for Sick Children Research Institute, Toronto, Canada.

出版信息

Imaging Neurosci (Camb). 2024 Jun 17;2. doi: 10.1162/imag_a_00195. eCollection 2024.

Abstract

The functional repertoire of the human brain changes dramatically throughout the developmental trajectories of early life and even all the way throughout the adult lifespan into older age. Capturing this arc is important to understand healthy brain ageing, and conversely, how injury and diseased states can lead to accelerated brain ageing. Regression modelling using lifespan imaging data can reliably predict an individual's brain age based on expected arcs of ageing. One feature of brain function that is important in this respect, and understudied to date, is neural oscillations-the rhythmic fluctuations of brain activity that index neural cell assemblies and their functioning, as well as coordinating information flow around networks. Here, we analysed resting-state magnetoencephalography (MEG) recordings from 367 healthy participants aged 18 to 83, using two distinct statistical approaches to link neural oscillations and functional coupling with that of healthy ageing. Spectral power and leakage-corrected amplitude envelope correlations were calculated for each canonical frequency band from delta through gamma ranges. Spatially and spectrally consistent associations between healthy ageing and neurophysiological features were found across the applied methods, showing differential effects on neural oscillations, with decreasing amplitude of low frequencies throughout the adult lifespan, and increasing high-frequency amplitude. Functional connectivity within and between resting-state brain networks mediated by alpha coupling generally decreased throughout adulthood and increased in the beta band. Predictive modelling of brain age via regression showed an age-dependent prediction bias, resulting in overestimating the age of younger people (<40 years old) and underestimating the age of older individuals. These findings evidence strong age-related neurophysiological changes in oscillatory activity and functional networks of the brain as measured by resting-state MEG and that cortical oscillations are moderately reliable markers for predictive modelling. For researchers in the field of predictive brain age modelling with neurophysiological data, we recommend attention is paid to predictive biases for younger and older age ranges and consider using specific models for different age brackets. Nevertheless, these results suggest brain age prediction from MEG data can be used to model arcs of ageing throughout the adult lifespan and predict accelerated ageing in pathological brain states.

摘要

人类大脑的功能组成在生命早期的发育轨迹中会发生巨大变化,甚至在整个成年期直至老年阶段都会持续变化。描绘这一过程对于理解健康的大脑衰老至关重要,反之,了解损伤和疾病状态如何导致大脑加速衰老也很重要。使用寿命成像数据进行回归建模可以根据预期的衰老轨迹可靠地预测个体的脑龄。在这方面,脑功能的一个重要但迄今研究不足的特征是神经振荡——大脑活动的节律性波动,它指示神经细胞集合及其功能,以及协调网络周围的信息流。在这里,我们分析了367名年龄在18至83岁之间的健康参与者的静息态脑磁图(MEG)记录,采用两种不同的统计方法将神经振荡和功能耦合与健康衰老联系起来。计算了从δ波到γ波范围内每个标准频段的频谱功率和经泄漏校正的幅度包络相关性。在所应用的方法中,发现健康衰老与神经生理特征在空间和频谱上具有一致的关联,显示出对神经振荡的不同影响,在整个成年期低频幅度降低,高频幅度增加。由α耦合介导的静息态脑网络内部和之间的功能连接在整个成年期通常会减少,而在β波段会增加。通过回归对脑龄进行预测建模显示出年龄依赖性的预测偏差,导致对年轻人(<40岁)的年龄高估,对老年人的年龄低估。这些发现证明,通过静息态MEG测量,大脑的振荡活动和功能网络存在与年龄相关的强烈神经生理变化,并且皮层振荡是预测建模的适度可靠指标。对于使用神经生理数据进行预测性脑龄建模领域的研究人员,我们建议关注年轻和老年范围的预测偏差,并考虑针对不同年龄组使用特定模型。尽管如此,这些结果表明,从MEG数据预测脑龄可用于模拟整个成年期的衰老轨迹,并预测病理性脑状态下的加速衰老。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfb5/12272185/f96582ae4117/imag_a_00195_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验