Suppr超能文献

Drug-induced modification of the system properties associated with spontaneous human electroencephalographic activity.

作者信息

Liley David T J, Cadusch Peter J, Gray Marcus, Nathan Pradeep J

机构信息

Centre for Intelligent Systems and Complex Processes, School of Biophysical Sciences and Electrical Engineering, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Nov;68(5 Pt 1):051906. doi: 10.1103/PhysRevE.68.051906. Epub 2003 Nov 24.

Abstract

The benzodiazepine (BZ) class of minor tranquilizers are important modulators of the gamma-amino butyric acid (GABA(A))/BZ receptor complex that are well known to affect the spectral properties of spontaneous electroencephalographic activity. While it is experimentally well established that the BZs reduce total alpha band (8-13 Hz) power and increase total beta band (13-30 Hz) power, it is unclear what the physiological basis for this effect is. Based on a detailed theory of cortical electrorhythmogenesis it is conjectured that such an effect is explicable in terms of the modulation of GABAergic neurotransmission within locally connected populations of excitatory and inhibitory cortical neurons. Motivated by this theory, fixed order autoregressive moving average (ARMA) models were fitted to spontaneous eyes-closed electroencephalograms recorded from subjects before and approximately 2 h after the oral administration of a single 1 mg dose of the BZ alprazolam. Subsequent pole-zero analysis revealed that BZs significantly transform the dominant system pole such that its frequency and damping increase. Comparisons of ARMA derived power spectra with fast Fourier transform derived spectra indicate an enhanced ability to identify benzodiazepine induced electroencephalographic changes. This experimental result is in accord with the theoretical predictions implying that alprazolam enhances inhibition acting on inhibitory neurons more than inhibition acting on excitatory neurons. Further such a result is consistent with reported cortical neuronal distributions of the various GABA(A) receptor pharmacological subtypes. Therefore physiologically specified fixed order ARMA modeling is expected to become an important tool for the systematic investigation and modeling of a wide range of cortically acting compounds.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验