Suppr超能文献

在脑磁图波束形成器中使用解剖学约束。

The use of anatomical constraints with MEG beamformers.

作者信息

Hillebrand Arjan, Barnes Gareth R

机构信息

The Wellcome Trust Laboratory for MEG Studies, Neurosciences Research Institute, Aston University, Birmingham, UK.

出版信息

Neuroimage. 2003 Dec;20(4):2302-13. doi: 10.1016/j.neuroimage.2003.07.031.

Abstract

Synthetic Aperture Magnetometry (SAM) is a beamformer approach for the localisation of neuronal activity from EEG/MEG data. SAM estimates the optimum orientation of each source in a predefined source space by a nonlinear search for the orientation that maximises the beamformer output. However, MEG is most sensitive to cortical sources and these sources are generally oriented perpendicular to the surface. The reconstructed neuronal activity can therefore reasonably be constrained to the cortical surface, orientated perpendicular to it, therefore removing the search for the optimum orientation for the computation of the beamformer weights. This paper sets out to compare the performance of a constrained and unconstrained beamformer (SAM), with respect to the localisation accuracy of the source reconstructions and the spatial resolution. Fifty sources were randomly placed on a cortical surface estimated from an MRI, and we simulated data over a range of different signal-to-noise ratios (SNRs) for each source. These datasets were analysed using both an unconstrained beamformer (SAM) and a constrained beamformer (with the sources orientated perpendicular to the cortical surface). The influence of errors in the estimation of the surface location and surface normals on the performance of the constrained beamformer, representing MEG/MRI coregistration and segmentation errors, were also examined. The spatial resolution of the beamformer improves, typically by a factor of four by applying anatomical constraints, and the localisation accuracy improves marginally. However, the advantage in spatial resolution disappears when errors are introduced into the orientation and location constraints, and, moreover, the localisation accuracy of the inaccurately constrained beamformer degrades rapidly. We conclude that the use of anatomical constraints is only advantageous if the MEG/MRI coregistration error is smaller than 2 mm and the error in the estimation of the cortical surface orientation is smaller than 10 degrees.

摘要

合成孔径磁强计(SAM)是一种用于从脑电图/脑磁图(EEG/MEG)数据中定位神经元活动的波束形成器方法。SAM通过对能使波束形成器输出最大化的方向进行非线性搜索,来估计预定义源空间中每个源的最佳方向。然而,脑磁图对皮质源最为敏感,并且这些源通常垂直于表面定向。因此,重建的神经元活动可以合理地被约束在皮质表面,并垂直于该表面定向,从而在计算波束形成器权重时无需搜索最佳方向。本文旨在比较约束和非约束波束形成器(SAM)在源重建的定位精度和空间分辨率方面的性能。五十个源被随机放置在根据磁共振成像(MRI)估计的皮质表面上,并且我们针对每个源在一系列不同的信噪比(SNR)下模拟数据。这些数据集使用非约束波束形成器(SAM)和约束波束形成器(源垂直于皮质表面定向)进行分析。还研究了表面位置和表面法线估计中的误差对约束波束形成器性能的影响,这些误差代表脑磁图/磁共振成像配准和分割误差。通过应用解剖学约束,波束形成器的空间分辨率通常提高四倍,并且定位精度略有提高。然而,当在方向和位置约束中引入误差时,空间分辨率的优势消失,而且,约束不准确的波束形成器的定位精度会迅速下降。我们得出结论,仅当脑磁图/磁共振成像配准误差小于2毫米且皮质表面方向估计误差小于10度时,使用解剖学约束才是有利的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验