Suppr超能文献

声束形成源分析对正向建模缺陷的敏感性。

Sensitivity of beamformer source analysis to deficiencies in forward modeling.

机构信息

Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany.

出版信息

Hum Brain Mapp. 2010 Dec;31(12):1907-27. doi: 10.1002/hbm.20986. Epub 2010 May 24.

Abstract

Beamforming approaches have recently been developed for the field of electroencephalography (EEG) and magnetoencephalography (MEG) source analysis and opened up new applications within various fields of neuroscience. While the number of beamformer applications thus increases fast-paced, fundamental methodological considerations, especially the dependence of beamformer performance on leadfield accuracy, is still quite unclear. In this article, we present a systematic study on the influence of improper volume conductor modeling on the source reconstruction performance of an EEG-data based synthetic aperture magnetometry (SAM) beamforming approach. A finite element model of a human head is derived from multimodal MR images and serves as a realistic volume conductor model. By means of a theoretical analysis followed by a series of computer simulations insight is gained into beamformer performance with respect to reconstruction errors in peak location, peak amplitude, and peak width resulting from geometry and anisotropy volume conductor misspecifications, sensor noise, and insufficient sensor coverage. We conclude that depending on source position, sensor coverage, and accuracy of the volume conductor model, localization errors up to several centimeters must be expected. As we could show that the beamformer tries to find the best fitting leadfield (least squares) with respect to its scanning space, this result can be generalized to other localization methods. More specific, amplitude, and width of the beamformer peaks significantly depend on the interaction between noise and accuracy of the volume conductor model. The beamformer can strongly profit from a high signal-to-noise ratio, but this requires a sufficiently realistic volume conductor model.

摘要

波束形成方法最近已被开发用于脑电图 (EEG) 和脑磁图 (MEG) 源分析领域,并在神经科学的各个领域开辟了新的应用。虽然波束形成器的应用数量增长迅速,但基本的方法考虑因素,特别是波束形成器性能对导联场准确性的依赖性,仍然相当不清楚。在本文中,我们对基于 EEG 数据的综合孔径磁测 (SAM) 波束形成方法中不当体积导体建模对源重建性能的影响进行了系统研究。从多模态磁共振图像中导出了一个人类头部的有限元模型,并用作现实的体积导体模型。通过理论分析和一系列计算机模拟,深入了解了由于几何形状和各向异性体积导体模型不准确、传感器噪声和传感器覆盖不足而导致的峰值位置、峰值幅度和峰值宽度的重建误差对波束形成器性能的影响。我们得出的结论是,根据源位置、传感器覆盖范围和体积导体模型的准确性,可能会出现高达几厘米的定位误差。由于我们可以证明波束形成器试图根据其扫描空间找到最佳拟合导联场(最小二乘法),因此可以将该结果推广到其他定位方法。更具体地说,波束形成器峰值的幅度和宽度明显取决于噪声和体积导体模型准确性之间的相互作用。波束形成器可以从高信噪比中受益匪浅,但这需要一个足够现实的体积导体模型。

相似文献

5
A guideline for head volume conductor modeling in EEG and MEG.脑电图和脑磁图头部容积导体建模指南。
Neuroimage. 2014 Oct 15;100:590-607. doi: 10.1016/j.neuroimage.2014.06.040. Epub 2014 Jun 25.
6
Evaluation of multiple-sphere head models for MEG source localization.多球体头模型在脑磁图源定位中的评估。
Phys Med Biol. 2011 Sep 7;56(17):5621-35. doi: 10.1088/0031-9155/56/17/010. Epub 2011 Aug 9.
7

引用本文的文献

4
5
IFCN-endorsed practical guidelines for clinical magnetoencephalography (MEG).国际脑磁图学会(IFCN)临床脑磁图(MEG)实践指南。
Clin Neurophysiol. 2018 Aug;129(8):1720-1747. doi: 10.1016/j.clinph.2018.03.042. Epub 2018 Apr 17.

本文引用的文献

6
Optimising experimental design for MEG beamformer imaging.优化用于脑磁图波束形成器成像的实验设计。
Neuroimage. 2008 Feb 15;39(4):1788-802. doi: 10.1016/j.neuroimage.2007.09.050. Epub 2007 Oct 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验