Suppr超能文献

在一系列有阻尼的表面上跳跃时的神经肌肉变化。

Neuromuscular changes for hopping on a range of damped surfaces.

作者信息

Moritz Chet T, Greene Spencer M, Farley Claire T

机构信息

Locomotion Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, CO 80309-0354, USA.

出版信息

J Appl Physiol (1985). 2004 May;96(5):1996-2004. doi: 10.1152/japplphysiol.00983.2003. Epub 2003 Dec 19.

Abstract

Humans hopping and running on elastic and damped surfaces maintain similar center-of-mass dynamics by adjusting stance leg mechanics. We tested the hypothesis that the leg transitions from acting like an energy-conserving spring on elastic surfaces to a power-producing actuator on damped surfaces during hopping due to changes in ankle mechanics. To test this hypothesis, we collected surface electromyography, video kinematics, and ground reaction force while eight male subjects (body mass: 76.2 +/- 1.7 kg) hopped in place on a range of damped surfaces. On the most damped surface, most of the mechanical work done by the leg appeared at the ankle (52%), whereas 23 and 25% appeared at the knee and hip, respectively. Hoppers extended all three joints during takeoff further than they flexed during landing and thereby did more net positive work on more heavily damped surfaces. Also, all three joints reached peak flexion sooner after touchdown on more heavily damped surfaces. Consequently, peak moment occurred during joint extension rather than at peak flexion as on elastic surfaces. These strategies caused the positive work during extension to exceed the negative work during flexion to a greater extent on more heavily damped surfaces. At the muscle level, surface EMG increased by 50-440% in ankle and knee extensors as surface damping increased to compensate for greater surface energy dissipation. Our findings, and those of previous studies of hopping on elastic surfaces, show that the ankle joint is the key determinant of both springlike and actuator-like leg mechanics during hopping in place.

摘要

人类在弹性和阻尼表面上跳跃和奔跑时,通过调整支撑腿的力学机制来维持相似的质心动力学。我们测试了这样一个假设:在跳跃过程中,由于踝关节力学的变化,腿部在弹性表面上表现得像一个节能弹簧,而在阻尼表面上则转变为一个产生动力的致动器。为了验证这一假设,我们在八名男性受试者(体重:76.2±1.7千克)在一系列阻尼表面上原地跳跃时,收集了表面肌电图、视频运动学和地面反作用力数据。在阻尼最大的表面上,腿部所做的大部分机械功出现在踝关节(52%),而分别有23%和25%出现在膝关节和髋关节。跳跃者在起跳时三个关节的伸展幅度都比落地时的屈曲幅度更大,因此在阻尼更大的表面上做的净正功更多。此外,在阻尼更大的表面上,三个关节在触地后更快达到最大屈曲。因此,峰值力矩出现在关节伸展过程中,而不是像在弹性表面上那样出现在最大屈曲时。这些策略使得在阻尼更大的表面上,伸展过程中的正功比屈曲过程中的负功超出的程度更大。在肌肉层面,随着表面阻尼的增加,踝关节和膝关节伸肌的表面肌电图增加了50%-440%,以补偿更大的表面能量耗散。我们的研究结果以及之前关于在弹性表面上跳跃的研究结果表明,踝关节是原地跳跃时腿部类似弹簧和类似致动器力学机制的关键决定因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验