Suppr超能文献

人类在有阻尼表面上跳跃:调整腿部力学的策略。

Human hopping on damped surfaces: strategies for adjusting leg mechanics.

作者信息

Moritz Chet T, Farley Claire T

机构信息

Department of Integrative Physiology, University of Colorado, Boulder, CO 80309-0354, USA.

出版信息

Proc Biol Sci. 2003 Aug 22;270(1525):1741-6. doi: 10.1098/rspb.2003.2435.

Abstract

Fast-moving legged animals bounce along the ground with spring-like legs and agilely traverse variable terrain. Previous research has shown that hopping and running humans maintain the same bouncing movement of the body's centre of mass on a range of elastic surfaces by adjusting their spring-like legs to exactly offset changes in surface stiffness. This study investigated human hopping on damped surfaces that dissipated up to 72% of the hopper's mechanical energy. On these surfaces, the legs did not act like pure springs. Leg muscles performed up to 24-fold more net work to replace the energy lost by the damped surface. However, considering the leg and surface together, the combination appeared to behave like a constant stiffness spring on all damped surfaces. By conserving the mechanics of the leg-surface combination regardless of surface damping, hoppers also conserved centre-of-mass motions. Thus, the normal bouncing movements of the centre of mass in hopping are not always a direct result of spring-like leg behaviour. Conserving the trajectory of the centre of mass by maintaining spring-like mechanics of the leg-surface combination may be an important control strategy for fast-legged locomotion on variable terrain.

摘要

行动迅速的有腿动物依靠如弹簧般的腿部在地面上跳跃前进,并能灵活穿越各种地形。先前的研究表明,跳跃和奔跑的人类通过调整如弹簧般的腿部,精确抵消表面刚度的变化,从而在一系列弹性表面上保持身体重心相同的弹跳运动。本研究调查了人类在能耗散高达跳跃者机械能72%的阻尼表面上的跳跃情况。在这些表面上,腿部的表现并不像纯弹簧。腿部肌肉所做的净功最多可达24倍,以补充被阻尼表面耗散的能量。然而,将腿部和表面综合考虑,在所有阻尼表面上,这种组合似乎表现得像一个刚度恒定的弹簧。通过不管表面阻尼如何都保持腿部与表面组合的力学特性,跳跃者也能保持重心运动。因此,跳跃时重心的正常弹跳运动并不总是如弹簧般腿部行为的直接结果。通过保持腿部与表面组合的弹簧般力学特性来维持重心轨迹,可能是在多变地形上快速腿部运动的一种重要控制策略。

相似文献

1
Human hopping on damped surfaces: strategies for adjusting leg mechanics.
Proc Biol Sci. 2003 Aug 22;270(1525):1741-6. doi: 10.1098/rspb.2003.2435.
2
Human hoppers compensate for simultaneous changes in surface compression and damping.
J Biomech. 2006;39(6):1030-8. doi: 10.1016/j.jbiomech.2005.02.011.
3
Neuromuscular changes for hopping on a range of damped surfaces.
J Appl Physiol (1985). 2004 May;96(5):1996-2004. doi: 10.1152/japplphysiol.00983.2003. Epub 2003 Dec 19.
4
Leg exoskeleton reduces the metabolic cost of human hopping.
J Appl Physiol (1985). 2009 Sep;107(3):670-8. doi: 10.1152/japplphysiol.91609.2008. Epub 2009 May 7.
5
Running in the real world: adjusting leg stiffness for different surfaces.
Proc Biol Sci. 1998 Jun 7;265(1400):989-94. doi: 10.1098/rspb.1998.0388.
8
Leg Joint Mechanics When Hopping at Different Frequencies.
J Appl Biomech. 2021 Jun 1;37(3):263-271. doi: 10.1123/jab.2020-0076. Epub 2021 May 11.
9
Passive dynamics change leg mechanics for an unexpected surface during human hopping.
J Appl Physiol (1985). 2004 Oct;97(4):1313-22. doi: 10.1152/japplphysiol.00393.2004. Epub 2004 May 28.
10
Scaling of the spring in the leg during bouncing gaits of mammals.
Integr Comp Biol. 2014 Dec;54(6):1099-108. doi: 10.1093/icb/icu114. Epub 2014 Oct 9.

引用本文的文献

1
Role of compliant mechanics and motor control in hopping - from human to robot.
Sci Rep. 2024 Mar 21;14(1):6820. doi: 10.1038/s41598-024-57149-0.
2
Neuromechanical adaptations of foot function when hopping on a damped surface.
J Appl Physiol (1985). 2022 Dec 1;133(6):1302-1308. doi: 10.1152/japplphysiol.00012.2022. Epub 2022 Oct 13.
3
Cardiorespiratory, Metabolic and Muscular Responses during a Video-Recorded Aerobic Dance Session on an Air Dissipation Platform.
Int J Environ Res Public Health. 2020 Dec 18;17(24):9511. doi: 10.3390/ijerph17249511.
4
Effect of Substrates' Compliance on the Jumping Mechanism of .
Front Bioeng Biotechnol. 2020 Jul 6;8:661. doi: 10.3389/fbioe.2020.00661. eCollection 2020.
5
Not all brawn, but some brain. Strength gains after training alters kinematic motor abundance in hopping.
PeerJ. 2018 Nov 23;6:e6010. doi: 10.7717/peerj.6010. eCollection 2018.
6
Shoes alter the spring-like function of the human foot during running.
J R Soc Interface. 2016 Jun;13(119). doi: 10.1098/rsif.2016.0174.
8
Increased medial longitudinal arch mobility, lower extremity kinematics, and ground reaction forces in high-arched runners.
J Athl Train. 2014 May-Jun;49(3):290-6. doi: 10.4085/1062-6050-49.3.05. Epub 2014 May 19.
9
Effects of a foot placement constraint on use of motor equivalence during human hopping.
PLoS One. 2013 Jul 30;8(7):e69429. doi: 10.1371/journal.pone.0069429. Print 2013.
10
Spring-like leg behaviour, musculoskeletal mechanics and control in maximum and submaximum height human hopping.
Philos Trans R Soc Lond B Biol Sci. 2011 May 27;366(1570):1516-29. doi: 10.1098/rstb.2010.0348.

本文引用的文献

1
A movement criterion for running.
J Biomech. 2002 May;35(5):649-55. doi: 10.1016/s0021-9290(01)00245-7.
2
Energetics and mechanics of human running on surfaces of different stiffnesses.
J Appl Physiol (1985). 2002 Feb;92(2):469-78. doi: 10.1152/japplphysiol.01164.2000.
3
Runners adjust leg stiffness for their first step on a new running surface.
J Biomech. 1999 Aug;32(8):787-94. doi: 10.1016/s0021-9290(99)00078-0.
4
Leg stiffness primarily depends on ankle stiffness during human hopping.
J Biomech. 1999 Mar;32(3):267-73. doi: 10.1016/s0021-9290(98)00170-5.
5
Mechanism of leg stiffness adjustment for hopping on surfaces of different stiffnesses.
J Appl Physiol (1985). 1998 Sep;85(3):1044-55. doi: 10.1152/jappl.1998.85.3.1044.
6
Running in the real world: adjusting leg stiffness for different surfaces.
Proc Biol Sci. 1998 Jun 7;265(1400):989-94. doi: 10.1098/rspb.1998.0388.
7
Mechanics and energetics of human locomotion on sand.
J Exp Biol. 1998 Jul;201(Pt 13):2071-80. doi: 10.1242/jeb.201.13.2071.
8
Interaction of leg stiffness and surfaces stiffness during human hopping.
J Appl Physiol (1985). 1997 Jan;82(1):15-22; discussion 13-4. doi: 10.1152/jappl.1997.82.1.15.
9
Running springs: speed and animal size.
J Exp Biol. 1993 Dec;185:71-86. doi: 10.1242/jeb.185.1.71.
10
Kinetics: our window into the goals and strategies of the central nervous system.
Behav Brain Res. 1995 Mar;67(2):111-20. doi: 10.1016/0166-4328(94)00154-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验