Moore Mary Courtney, Satake Shosuke, Lautz Margaret, Soleimanpour Scott A, Neal Doss W, Smith Marta, Cherrington Alan D
Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615, USA.
Diabetes. 2004 Jan;53(1):32-40. doi: 10.2337/diabetes.53.1.32.
We used tracer and arteriovenous difference techniques in conscious dogs to determine the effect of nonesterified fatty acids (NEFAs) on net hepatic glucose uptake (NHGU). The protocol included equilibration ([3-(3)H]glucose), basal, and two experimental periods (-120 to -30, -30 to 0, 0-120 [period 1], and 120-240 min [period 2], respectively). During periods 1 and 2, somatostatin, basal intraportal insulin and glucagon, portal glucose (21.3 micromol.kg(-1).min(-1)), peripheral glucose (to double the hepatic glucose load), and peripheral nicotinic acid (1.5 mg.kg(-1).min(-1)) were infused. During period 2, saline (nicotinic acid [NA], n = 7), lipid emulsion (NA plus lipid emulsion [NAL], n = 8), or glycerol (NA plus glycerol [NAG], n = 3) was infused peripherally. During period 2, the NA and NAL groups differed (P < 0.05) in rates of NHGU (10.5 +/- 2.08 and 4.7 +/- 1.9 micromol.g(-1).min(-1)), respectively, endogenous glucose R(a) (2.3 +/- 1.4 and 10.6 +/- 1.0 micromol.kg(-1).min(-1)), net hepatic NEFA uptakes (0.1 +/- 0.1 and 1.8 +/- 0.2 micromol.kg(-1).min(-1)), net hepatic beta-hydroxybutyrate output (0.1 +/- 0.0 and 0.4 +/- 0.1 micromol.kg(-1).min(-1)), and net hepatic lactate output (6.5 +/- 1.7 vs. -2.3 +/- 1.2 micromol.kg(-1).min(-1)). Hepatic glucose uptake and release were 2.6 micro mol. kg(-1). min(-1) less and 3.5 micro mol. kg(-1). min(-1) greater, respectively, in the NAL than NA group (NS). The NAG group did not differ significantly from the NA group in any of the parameters listed above. In the presence of hyperglycemia and relative insulin deficiency, elevated NEFAs reduce NHGU by stimulating hepatic glucose release and suppressing hepatic glucose uptake.
我们采用示踪剂和动静脉差值技术,在清醒犬身上研究非酯化脂肪酸(NEFAs)对肝脏葡萄糖净摄取量(NHGU)的影响。实验方案包括平衡期([3-(3)H]葡萄糖)、基础期以及两个实验期(分别为-120至-30分钟、-30至0分钟、0 - 120分钟[第1期]和120 - 240分钟[第2期])。在第1期和第2期,输注生长抑素、基础门静脉胰岛素和胰高血糖素、门静脉葡萄糖(21.3微摩尔·千克⁻¹·分钟⁻¹)、外周葡萄糖(使肝脏葡萄糖负荷加倍)以及外周烟酸(1.5毫克·千克⁻¹·分钟⁻¹)。在第2期,外周输注生理盐水(烟酸[NA],n = 7)、脂质乳剂(烟酸加脂质乳剂[NAL],n = 8)或甘油(烟酸加甘油[NAG],n = 3)。在第2期,NA组和NAL组的NHGU速率(分别为10.5±2.08和4.7±1.9微摩尔·克⁻¹·分钟⁻¹)、内源性葡萄糖R(a)(2.3±1.4和10.6±1.0微摩尔·千克⁻¹·分钟⁻¹)、肝脏NEFA净摄取量(0.1±0.1和1.8±0.2微摩尔·千克⁻¹·分钟⁻¹)、肝脏β-羟基丁酸净输出量(0.1±0.0和0.4±0.1微摩尔·千克⁻¹·分钟⁻¹)以及肝脏乳酸净输出量(6.5±1.7与-2.3±1.2微摩尔·千克⁻¹·分钟⁻¹)存在差异(P < 0.05)。与NA组相比,NAL组肝脏葡萄糖摄取量减少2.6微摩尔·千克⁻¹·分钟⁻¹,释放量增加3.5微摩尔·千克⁻¹·分钟⁻¹(无显著性差异)。NAG组在上述任何参数方面与NA组均无显著差异。在存在高血糖和相对胰岛素缺乏的情况下,升高的NEFAs通过刺激肝脏葡萄糖释放和抑制肝脏葡萄糖摄取来降低NHGU。