Tao Louis, Shelley Michael, McLaughlin David, Shapley Robert
Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10027, USA.
Proc Natl Acad Sci U S A. 2004 Jan 6;101(1):366-71. doi: 10.1073/pnas.2036460100. Epub 2003 Dec 26.
We explain how simple and complex cells arise in a large-scale neuronal network model of the primary visual cortex of the macaque. Our model consists of approximately 4000 integrate-and-fire, conductance-based point neurons, representing the cells in a small, 1-mm(2) patch of an input layer of the primary visual cortex. In the model the local connections are isotropic and nonspecific, and convergent input from the lateral geniculate nucleus confers cortical cells with orientation and spatial phase preference. The balance between lateral connections and lateral geniculate nucleus drive determines whether individual neurons in this recurrent circuit are simple or complex. The model reproduces qualitatively the experimentally observed distributions of both extracellular and intracellular measures of simple and complex response.
我们解释了在猕猴初级视觉皮层的大规模神经元网络模型中简单细胞和复杂细胞是如何产生的。我们的模型由大约4000个基于电导的积分发放点神经元组成,代表初级视觉皮层输入层中一个1平方毫米的小区域内的细胞。在该模型中,局部连接是各向同性且非特异性的,来自外侧膝状体核的汇聚输入赋予皮层细胞方向和空间相位偏好。横向连接和外侧膝状体核驱动之间的平衡决定了这个循环回路中的单个神经元是简单细胞还是复杂细胞。该模型定性地再现了实验观察到的简单和复杂反应的细胞外和细胞内测量的分布情况。