Seeman Nadrian C
Department of Chemistry, New York University, New York, NY 10003, USA.
Chem Biol. 2003 Dec;10(12):1151-9. doi: 10.1016/j.chembiol.2003.12.002.
Structural DNA nanotechnology consists of combining unusual DNA motifs by specific structurally well-defined cohesive interactions (primarily sticky ends) to produce target materials with predictable 3D structures. This effort has generated DNA polyhedral catenanes, robust nanomechanical devices, and a variety of periodic arrays in two dimensions. The system has been used to produce specific patterns on the mesoscale through designing and combining specific DNA strands, which are then examined by atomic force microscopy. The combination of these constructions with other chemical components is expected to contribute to the development of nanoelectronics, nanorobotics, and smart materials. The organizational capabilities of structural DNA nanotechnology are just beginning to be explored, and the field is expected ultimately to be able to organize a variety of species that will lead to exciting and possibly revolutionary materials.
结构DNA纳米技术包括通过特定的结构明确的粘性相互作用(主要是粘性末端)来组合异常的DNA基序,以产生具有可预测三维结构的目标材料。这一成果已经产生了DNA多面体连环体、坚固的纳米机械设备以及各种二维周期性阵列。该系统通过设计和组合特定的DNA链,已被用于在中尺度上产生特定图案,然后通过原子力显微镜进行检测。这些结构与其他化学成分的结合有望推动纳米电子学、纳米机器人技术和智能材料的发展。结构DNA纳米技术的组织能力才刚刚开始被探索,预计该领域最终将能够组织各种物种,从而产生令人兴奋且可能具有革命性的材料。