Suppr超能文献

由 DNA 折纸术制成的纳米机械分子器件。

Nanomechanical molecular devices made of DNA origami.

机构信息

Department of Chemistry and Materials Engineering, Kansai University , 3-3-35 Yamate, Suita, Osaka 564-8680, Japan.

出版信息

Acc Chem Res. 2014 Jun 17;47(6):1742-9. doi: 10.1021/ar400328v. Epub 2014 Apr 29.

Abstract

CONSPECTUS

Eight years have passed since the striking debut of the DNA origami technique ( Rothemund, P. W. K. Nature 2006 , 440 , 297 - 302 ), in which long single-stranded DNA is folded into a designed nanostructure, in either 2D or 3D, with the aid of many short staple strands. The number of proposals for new design principles for DNA origami structures seems to have already reached a peak. It is apparent that DNA origami study is now entering the second phase of creating practical applications. The development of functional nanomechanical molecular devices using the DNA origami technique is one such application attracting significant interest from researchers in the field. Nanomechanical DNA origami devices, which maintain the characteristics of DNA origami structures, have various advantages over conventional DNA nanomachines. Comparatively high assembly yield, relatively large size visible via atomic force microscopy (AFM) or transmission electron microscopy (TEM), and the capability to assemble multiple functional groups with precision using multiple staple strands are some of the advantages of the DNA origami technique for constructing sophisticated molecular devices. This Account describes the recent developments of such nanomechanical DNA origami devices and reviews the emerging target of DNA origami studies. First, simple "dynamic" DNA origami structures with transformation capability, such as DNA origami boxes and a DNA origami hatch with structure control, are briefly summarized. More elaborate nanomechanical DNA origami devices are then reviewed. The first example describes DNA origami pinching devices that can be used as "single-molecule" beacons to detect a variety of biorelated molecules, from metal ions at the size of a few tens of atomic mass number units to relatively gigantic proteins with a molecular mass greater than a hundred kilodaltons, all on a single platform. Clamshell-like DNA nanorobots equipped with logic gates can discriminate different cell lines, open their shell, and bind to their target. An intelligent DNA origami "sheath" can mimic the function of suppressors in a transcription regulation system to control the expression of a loaded gene. DNA origami "rolls" are created to construct precisely arranged plasmonic devices with metal nanoparticles. All of their functions are derived from their nanomechanical movement, which is programmable by designing the DNA sequence or by using the significant repository of technical achievements in nucleic acid chemistry. Finally, some studies on detailed structural parameters of DNA origami or their mechanical properties in nanoscale are discussed, which may be useful and inspiring for readers who intend to design new nanomechanical DNA origami devices.

摘要

简介

自 DNA 折纸技术(Rothemund,P. W. K. Nature 2006, 440, 297-302)问世以来已经过去了 8 年,在该技术中,长单链 DNA 在许多短订书钉的辅助下折叠成设计好的纳米结构,可以是 2D 也可以是 3D。似乎 DNA 折纸结构的新设计原则的提案数量已经达到了顶峰。很明显,DNA 折纸研究现在已经进入了创造实际应用的第二阶段。使用 DNA 折纸技术开发功能纳米机械分子器件就是这样一个吸引该领域研究人员关注的应用。保持 DNA 折纸结构特性的纳米机械 DNA 折纸器件与传统 DNA 纳米机器相比具有多种优势。相对较高的组装产率、原子力显微镜(AFM)或透射电子显微镜(TEM)可见的相对较大尺寸,以及使用多个订书钉精确组装多个功能基团的能力,都是 DNA 折纸技术构建复杂分子器件的一些优势。本综述描述了此类纳米机械 DNA 折纸器件的最新进展,并回顾了 DNA 折纸研究的新兴目标。首先,简要总结了具有转化能力的简单“动态”DNA 折纸结构,例如 DNA 折纸盒和具有结构控制的 DNA 折纸舱口。然后回顾了更复杂的纳米机械 DNA 折纸器件。第一个例子描述了 DNA 折纸夹断器件,它可以用作“单分子”信标来检测各种与生物相关的分子,从几十原子质量数单位大小的金属离子到分子量大于 100 千道尔顿的相对巨大的蛋白质,所有这些都在一个平台上。带有逻辑门的蛤壳状 DNA 纳米机器人可以区分不同的细胞系,打开外壳并与目标结合。智能 DNA 折纸“护套”可以模拟转录调控系统中的抑制剂的功能,以控制负载基因的表达。DNA 折纸“卷”用于构建具有金属纳米粒子的精确排列的等离子体器件。它们的所有功能都源于其纳米机械运动,通过设计 DNA 序列或使用核酸化学的重要技术成就库可以对其进行编程。最后,讨论了 DNA 折纸的一些详细结构参数或其在纳米尺度上的机械性能的研究,这对于那些打算设计新型纳米机械 DNA 折纸器件的读者可能是有用和有启发性的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验