Suppr超能文献

第二次国家毒理学计划关于啮齿动物致癌性预测的比较试验:最终结果

The second National Toxicology Program comparative exercise on the prediction of rodent carcinogenicity: definitive results.

作者信息

Benigni Romualdo, Zito Romano

机构信息

Laboratory of Comparative Toxicology and Ecotoxicology, Istituto Superiore di Sanita', Viale Regina Elena 299, 00161 Rome, Italy.

出版信息

Mutat Res. 2004 Jan;566(1):49-63. doi: 10.1016/s1383-5742(03)00051-6.

Abstract

Chemical carcinogenicity has been the target of a large array of attempts to create alternative predictive models, ranging from short-term biological assays (e.g. mutagenicity tests) to theoretical models. Among the theoretical models, the application of the science of structure-activity relationships (SAR) has earned special prominence. A crucial element is the independent evaluation of the predictive ability. In the past decade, there have been two fundamental comparative exercises on the prediction of chemical carcinogenicity, held under the aegis to the US National Toxicology Program (NTP). In both exercises, the predictions were published before the animal data were known, thus using a most stringent criterion of predictivity. We analyzed the results of the first comparative exercise in a previous paper [Mutat. Res. 387 (1997) 35]; here, we present the complete results of the second exercise, and we analyze and compare the prediction sets. The range of accuracy values was quite large: the systems that performed best in this prediction exercise were in the range 60-65% accuracy. They included various human experts approaches (e.g. Oncologic) and biologically based approaches (e.g. the experimental transformation assay in Syrian hamster embryo (SHE) cells). The main difficulty for the structure-activity relationship-based approaches was the discrimination between real carcinogens, and non-carcinogens containing structural alerts (SA) for genotoxic carcinogenicity. It is shown that the use of quantitative structure-activity relationship models, when possible, can contribute to overcome the above problem. Overall, given the uncertainty linked to the predictions, the predictions for the individual chemicals cannot be taken at face value; however, the general level of knowledge available today (especially for genotoxic carcinogens) allows qualified human experts to operate a very efficient priority setting of large sets of chemicals.

摘要

化学致癌性一直是大量尝试创建替代预测模型的目标,这些尝试涵盖从短期生物测定(如致突变性测试)到理论模型等多个方面。在理论模型中,结构 - 活性关系(SAR)科学的应用尤为突出。一个关键要素是对预测能力的独立评估。在过去十年中,在美国国家毒理学计划(NTP)的支持下,进行了两次关于化学致癌性预测的基础性比较研究。在这两次研究中,预测结果在动物数据知晓之前就已公布,从而采用了最严格的预测性标准。我们在之前的一篇论文[《突变研究》387(1997)35]中分析了第一次比较研究的结果;在此,我们展示第二次研究的完整结果,并对预测集进行分析和比较。准确性值的范围相当大:在这次预测研究中表现最佳的系统准确率在60 - 65%之间。它们包括各种人类专家方法(如肿瘤学方法)和基于生物学的方法(如叙利亚仓鼠胚胎(SHE)细胞中的实验性转化测定)。基于结构 - 活性关系的方法的主要困难在于区分真正的致癌物和含有遗传毒性致癌性结构警示(SA)的非致癌物。结果表明,在可能的情况下使用定量结构 - 活性关系模型有助于克服上述问题。总体而言,鉴于预测存在的不确定性,不能仅凭表面价值看待单个化学品的预测结果;然而,当今现有的总体知识水平(特别是对于遗传毒性致癌物)使合格的人类专家能够对大量化学品进行非常有效的优先级设定。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验