Sun Shouheng, Zeng Hao, Robinson David B, Raoux Simone, Rice Philip M, Wang Shan X, Li Guanxiong
IBM T. J. Watson Research Center, Yorktown Heights, New York 10598, USA.
J Am Chem Soc. 2004 Jan 14;126(1):273-9. doi: 10.1021/ja0380852.
High-temperature solution phase reaction of iron(III) acetylacetonate, Fe(acac)(3), with 1,2-hexadecanediol in the presence of oleic acid and oleylamine leads to monodisperse magnetite (Fe(3)O(4)) nanoparticles. Similarly, reaction of Fe(acac)(3) and Co(acac)(2) or Mn(acac)(2) with the same diol results in monodisperse CoFe(2)O(4) or MnFe(2)O(4) nanoparticles. Particle diameter can be tuned from 3 to 20 nm by varying reaction conditions or by seed-mediated growth. The as-synthesized iron oxide nanoparticles have a cubic spinel structure as characterized by HRTEM, SAED, and XRD. Further, Fe(3)O(4) can be oxidized to Fe(2)O(3), as evidenced by XRD, NEXAFS spectroscopy, and SQUID magnetometry. The hydrophobic nanoparticles can be transformed into hydrophilic ones by adding bipolar surfactants, and aqueous nanoparticle dispersion is readily made. These iron oxide nanoparticles and their dispersions in various media have great potential in magnetic nanodevice and biomagnetic applications.
乙酰丙酮铁(Fe(acac)(3))与1,2 - 十六烷二醇在油酸和油胺存在下进行高温溶液相反应,可生成单分散的磁铁矿(Fe(3)O(4))纳米颗粒。类似地,Fe(acac)(3) 与Co(acac)(2) 或Mn(acac)(2) 与相同的二醇反应,可生成单分散的CoFe(2)O(4) 或MnFe(2)O(4) 纳米颗粒。通过改变反应条件或采用种子介导生长法,颗粒直径可在3至20纳米之间调节。如高分辨透射电子显微镜(HRTEM)、选区电子衍射(SAED)和X射线衍射(XRD)所表征,合成的氧化铁纳米颗粒具有立方尖晶石结构。此外,如XRD、近边X射线吸收精细结构光谱(NEXAFS)和超导量子干涉仪磁力测量(SQUID)所示,Fe(3)O(4) 可被氧化为Fe(2)O(3)。通过添加双亲性表面活性剂,疏水性纳米颗粒可转化为亲水性纳米颗粒,并且易于制备纳米颗粒的水分散体。这些氧化铁纳米颗粒及其在各种介质中的分散体在磁性纳米器件和生物磁应用中具有巨大潜力。