文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Advances in magnetic nanoparticles for molecular medicine.

作者信息

Yang Xiaoyue, Kubican Sarah E, Yi Zhongchao, Tong Sheng

机构信息

F. Joseph Halcomb III, M. D. Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky 40536, USA.

出版信息

Chem Commun (Camb). 2025 Feb 13;61(15):3093-3108. doi: 10.1039/d4cc05167j.


DOI:10.1039/d4cc05167j
PMID:39846549
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11756346/
Abstract

Magnetic nanoparticles (MNPs) are highly versatile nanomaterials in nanomedicine, owing to their diverse magnetic properties, which can be tailored through variations in size, shape, composition, and exposure to inductive magnetic fields. Over four decades of research have led to the clinical approval or ongoing trials of several MNP formulations, fueling continued innovation. Beyond traditional applications in drug delivery, imaging, and cancer hyperthermia, MNPs have increasingly advanced into molecular medicine. Under external magnetic fields, MNPs can generate mechano- or thermal stimuli to modulate individual molecules or cells deep within tissue, offering precise, remote control of biological processes at cellular and molecular levels. These unique capabilities have opened new avenues in emerging fields such as genome editing, cell therapies, and neuroscience, underpinned by a growing understanding of nanomagnetism and the molecular mechanisms responding to mechanical and thermal cues. Research on MNPs as a versatile synthetic material capable of engineering control at the cellular and molecular levels holds great promise for advancing the frontiers of molecular medicine, including areas such as genome editing and synthetic biology. This review summarizes recent clinical studies showcasing the classical applications of MNPs and explores their integration into molecular medicine, with the goal of inspiring the development of next-generation MNP-based platforms for disease treatment.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a373/11756346/86fc44a92f39/d4cc05167j-p4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a373/11756346/03bd425067ec/d4cc05167j-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a373/11756346/d039ec774679/d4cc05167j-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a373/11756346/5fc4cec7c1b0/d4cc05167j-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a373/11756346/ff9b6d7fb206/d4cc05167j-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a373/11756346/5eaaf6b1c3e5/d4cc05167j-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a373/11756346/0c9587457ecf/d4cc05167j-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a373/11756346/5ffdb097175d/d4cc05167j-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a373/11756346/117e6e3687dd/d4cc05167j-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a373/11756346/164560f7f514/d4cc05167j-p1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a373/11756346/d4904fd2584f/d4cc05167j-p2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a373/11756346/8032caedb7e3/d4cc05167j-p3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a373/11756346/86fc44a92f39/d4cc05167j-p4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a373/11756346/03bd425067ec/d4cc05167j-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a373/11756346/d039ec774679/d4cc05167j-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a373/11756346/5fc4cec7c1b0/d4cc05167j-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a373/11756346/ff9b6d7fb206/d4cc05167j-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a373/11756346/5eaaf6b1c3e5/d4cc05167j-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a373/11756346/0c9587457ecf/d4cc05167j-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a373/11756346/5ffdb097175d/d4cc05167j-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a373/11756346/117e6e3687dd/d4cc05167j-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a373/11756346/164560f7f514/d4cc05167j-p1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a373/11756346/d4904fd2584f/d4cc05167j-p2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a373/11756346/8032caedb7e3/d4cc05167j-p3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a373/11756346/86fc44a92f39/d4cc05167j-p4.jpg

相似文献

[1]
Advances in magnetic nanoparticles for molecular medicine.

Chem Commun (Camb). 2025-2-13

[2]
Magnetic nanoparticles in nanomedicine: a review of recent advances.

Nanotechnology. 2019-9-6

[3]
Roadmap on magnetic nanoparticles in nanomedicine.

Nanotechnology. 2024-11-5

[4]
Curcumin-loaded magnetic nanoparticles for breast cancer therapeutics and imaging applications.

Int J Nanomedicine. 2012-4-17

[5]
Bench-to-bedside translation of magnetic nanoparticles.

Nanomedicine (Lond). 2014-4

[6]
Magnetic iron oxide nanoparticles as drug carriers: preparation, conjugation and delivery.

Nanomedicine (Lond). 2018-3-16

[7]
Magnetic nanoparticles for cancer theranostics: Advances and prospects.

J Control Release. 2021-7-10

[8]
Magnetic engineering nanoparticles: Versatile tools revolutionizing biomedical applications.

Biomater Adv. 2024-10

[9]
Magnetic Nanoparticles: A Review on Synthesis, Characterization, Functionalization, and Biomedical Applications.

Small. 2024-2

[10]
Bioactivity of Hybrid Polymeric Magnetic Nanoparticles and Their Applications in Drug Delivery.

Curr Pharm Des. 2016

引用本文的文献

[1]
Micron-Sized FeO/PCL Biocomposite Scaffolds to Attract Magnetic Nanoparticles for Targeted Drug Delivery.

Bioengineering (Basel). 2025-4-1

本文引用的文献

[1]
Magnetic Iron Oxide Nanoparticles Enhance Exosome Production by Upregulating Exosome Transport and Secretion Pathways.

ACS Appl Mater Interfaces. 2024-12-11

[2]
Magnetic-Nanorod-Mediated Nanowarming with Uniform and Rate-Regulated Heating.

Nano Lett. 2024-9-18

[3]
Iron oxide nanozymes enhanced by ascorbic acid for macrophage-based cancer therapy.

Nanoscale. 2024-8-7

[4]
In vivo magnetogenetics for cell-type-specific targeting and modulation of brain circuits.

Nat Nanotechnol. 2024-9

[5]
Engineering Magnetic Nanoclusters for Highly Efficient Heating in Radio-Frequency Nanowarming.

Nano Lett. 2024-4-17

[6]
Optogenetics for light control of biological systems.

Nat Rev Methods Primers. 2022

[7]
Enhancing ROS-Inducing Nanozyme through Intraparticle Electron Transport.

Small. 2024-2

[8]
Targeted mechanical stimulation via magnetic nanoparticles guides in vitro tissue development.

Nat Commun. 2023-8-30

[9]
Vitrification and nanowarming enable long-term organ cryopreservation and life-sustaining kidney transplantation in a rat model.

Nat Commun. 2023-6-9

[10]
Force-Mediated Endocytosis of Iron Oxide Nanoparticles for Magnetic Targeting of Stem Cells.

ACS Appl Mater Interfaces. 2023-5-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索