Suppr超能文献

基于新原子类型的人工智能拓扑指数:在醛和酮的定量构效关系研究中的应用。

New atom-type-based AI topological indices: application to QSPR studies of aldehydes and ketones.

作者信息

Ren Biye

机构信息

Research Institute of Materials Science, South China University of Technology, Guangzhou 510640, PR China.

出版信息

J Comput Aided Mol Des. 2003 Sep;17(9):607-20. doi: 10.1023/b:jcam.0000005764.26206.74.

Abstract

Multiple linear regression (MLR) analysis based on a combined use of the modified Xu index and the atom-type based AI indices is performed to construct quantitative structure-property models on several data sets of organic compounds including aliphatic aldehydes and/or ketones. For each of the physical properties (the normal boiling points, molar refractions, gas heat capacities at 25 degrees C, water solubility at 25 degrees C, and n-octanol/water partition coefficient at 25 degrees C), high quality QSPR models are obtained, particularly the decrease in the standard error is within the range of 23.6-75.9% relative to the linear models with the modified Xu index alone. For individual subsets containing only aldehydes or ketones, in the majority of cases the quality of the model can be further improved. The significant improvement verifies the efficiency of the present approach and also indicates the usefulness of these indices for application to a wide range of physical properties. The results indicate that the physical properties studied are dominated by molecular size but atom types have smaller influences, especially the oxygen atom seems to be most important due to intermolecular polar interactions. The final models are validated to be statistically reliable using the leave-one-out cross-validation and/or an external test set.

摘要

基于改良的徐氏指数和基于原子类型的人工智能指数的组合使用进行多元线性回归(MLR)分析,以构建包括脂肪醛和/或酮在内的多个有机化合物数据集的定量结构-性质模型。对于每种物理性质(正常沸点、摩尔折射度、25℃下的气体热容、25℃下的水溶性以及25℃下的正辛醇/水分配系数),均获得了高质量的QSPR模型,特别是相对于仅使用改良徐氏指数的线性模型,标准误差的降低幅度在23.6-75.9%范围内。对于仅包含醛或酮的各个子集,在大多数情况下,模型质量可以进一步提高。显著的改进验证了本方法的有效性,也表明了这些指数在广泛物理性质应用中的有用性。结果表明,所研究的物理性质主要由分子大小决定,但原子类型的影响较小,特别是由于分子间极性相互作用,氧原子似乎最为重要。使用留一法交叉验证和/或外部测试集对最终模型进行验证,结果表明其在统计上是可靠的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验