Ren Biye
Research Institute of Materials Science, South China University of Technology, Guangzhou, People's Republic of China.
Comput Chem. 2002 Jun;26(4):357-69. doi: 10.1016/s0097-8485(01)00128-0.
Atom-type AI topological indices derived from the topological distance sums and vertex degree further are used to describe different structural environment of each atom-type in a molecule. The multiple linear regression based on combined use of the proposed Xu index and AI indices is performed to develop high quality QSPR models for describing six physical properties (the normal boiling points, heats of vaporization, molar volumes, molar refractions, van der Waals' constants, and Pitzer's acentric factors) of alkanes with up to nine carbon atoms. For each of six properties, the correlation coefficient r of the final models is larger than 0.995 and particularly the decrease in the standard error (s) is within the range of 45-86% as compared with the simple linear models with Xu index alone. The agreement between calculated and experimental data is quite good. The results indicate the potential of these indices for application to a wide range of physical properties. The role of each of the molecular size and individual groups in the molecules are illustrated by analyzing the relative or fraction contributions of individual indices. The results indicate that the six physical properties of alkanes are dominated by molecular size while AI indices have smaller influence dependent on the studied properties. Moreover, the studies demonstrate that each atomic group contributes an indefinite value to properties dependent on its structural environment in a molecule or other groups present. The cross-validation using the more general leave-n-out method demonstrates the final models to be highly statistically reliable.
从拓扑距离总和和顶点度进一步推导得到的原子类型人工智能拓扑指数,用于描述分子中各原子类型的不同结构环境。基于所提出的徐氏指数和人工智能指数的联合使用进行多元线性回归,以开发高质量的定量结构-性质关系(QSPR)模型,用于描述含九个碳原子以内烷烃的六种物理性质(正常沸点、汽化热、摩尔体积、摩尔折射度、范德华常数和皮兹偏心因子)。对于这六种性质中的每一种,最终模型的相关系数r均大于0.995,特别是与仅使用徐氏指数的简单线性模型相比,标准误差(s)的降低幅度在45%-86%范围内。计算值与实验数据之间的吻合度相当好。结果表明这些指数在应用于广泛物理性质方面的潜力。通过分析各个指数的相对或分数贡献,阐明了分子大小和分子中各个基团的作用。结果表明,烷烃的六种物理性质主要由分子大小决定,而人工智能指数的影响较小,这取决于所研究的性质。此外,研究表明,每个原子基团对性质的贡献值不确定,这取决于其在分子中的结构环境或存在的其他基团。使用更通用的留一法进行交叉验证表明最终模型具有高度的统计可靠性。