Gianola Daniel, Ødegård Jørgen, Heringstad Bjørg, Klemetsdal Gunnar, Sorensen Daniel, Madsen Per, Jensen Just, Detilleux Johann
Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA.
Genet Sel Evol. 2004 Jan-Feb;36(1):3-27. doi: 10.1186/1297-9686-36-1-3.
A Gaussian mixture model with a finite number of components and correlated random effects is described. The ultimate objective is to model somatic cell count information in dairy cattle and to develop criteria for genetic selection against mastitis, an important udder disease. Parameter estimation is by maximum likelihood or by an extension of restricted maximum likelihood. A Monte Carlo expectation-maximization algorithm is used for this purpose. The expectation step is carried out using Gibbs sampling, whereas the maximization step is deterministic. Ranking rules based on the conditional probability of membership in a putative group of uninfected animals, given the somatic cell information, are discussed. Several extensions of the model are suggested.
描述了一种具有有限数量成分和相关随机效应的高斯混合模型。最终目标是对奶牛的体细胞计数信息进行建模,并制定针对乳腺炎(一种重要的乳房疾病)的遗传选择标准。参数估计采用最大似然法或受限最大似然法的扩展。为此使用了蒙特卡罗期望最大化算法。期望步骤使用吉布斯采样进行,而最大化步骤是确定性的。讨论了基于给定体细胞信息属于假定未感染动物组的条件概率的排序规则。还提出了该模型的几种扩展。