Suppr超能文献

用于推断奶牛乳腺炎易感性的混合模型:基于似然性推断的方法

Mixture model for inferring susceptibility to mastitis in dairy cattle: a procedure for likelihood-based inference.

作者信息

Gianola Daniel, Ødegård Jørgen, Heringstad Bjørg, Klemetsdal Gunnar, Sorensen Daniel, Madsen Per, Jensen Just, Detilleux Johann

机构信息

Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA.

出版信息

Genet Sel Evol. 2004 Jan-Feb;36(1):3-27. doi: 10.1186/1297-9686-36-1-3.

Abstract

A Gaussian mixture model with a finite number of components and correlated random effects is described. The ultimate objective is to model somatic cell count information in dairy cattle and to develop criteria for genetic selection against mastitis, an important udder disease. Parameter estimation is by maximum likelihood or by an extension of restricted maximum likelihood. A Monte Carlo expectation-maximization algorithm is used for this purpose. The expectation step is carried out using Gibbs sampling, whereas the maximization step is deterministic. Ranking rules based on the conditional probability of membership in a putative group of uninfected animals, given the somatic cell information, are discussed. Several extensions of the model are suggested.

摘要

描述了一种具有有限数量成分和相关随机效应的高斯混合模型。最终目标是对奶牛的体细胞计数信息进行建模,并制定针对乳腺炎(一种重要的乳房疾病)的遗传选择标准。参数估计采用最大似然法或受限最大似然法的扩展。为此使用了蒙特卡罗期望最大化算法。期望步骤使用吉布斯采样进行,而最大化步骤是确定性的。讨论了基于给定体细胞信息属于假定未感染动物组的条件概率的排序规则。还提出了该模型的几种扩展。

相似文献

2
Application of a mixed normal mixture model for the estimation of Mastitis-related parameters.
J Dairy Sci. 2000 Oct;83(10):2341-9. doi: 10.3168/jds.S0022-0302(00)75122-8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验