Suppr超能文献

用于二元数据遗传分析的纵向随机效应模型及其在奶牛乳腺炎中的应用

Longitudinal random effects models for genetic analysis of binary data with application to mastitis in dairy cattle.

作者信息

Rekaya Romdhane, Gianola Daniel, Weigel Kent, Shook George

机构信息

Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA.

出版信息

Genet Sel Evol. 2003 Sep-Oct;35(5):457-68. doi: 10.1186/1297-9686-35-6-457.

Abstract

A Bayesian analysis of longitudinal mastitis records obtained in the course of lactation was undertaken. Data were 3341 test-day binary records from 329 first lactation Holstein cows scored for mastitis at 14 and 30 days of lactation and every 30 days thereafter. First, the conditional probability of a sequence for a given cow was the product of the probabilities at each test-day. The probability of infection at time t for a cow was a normal integral, with its argument being a function of "fixed" and "random" effects and of time. Models for the latent normal variable included effects of: (1) year-month of test + a five-parameter linear regression function ("fixed", within age-season of calving) + genetic value of the cow + environmental effect peculiar to all records of the same cow + residual. (2) As in (1), but with five parameter random genetic regressions for each cow. (3) A hierarchical structure, where each of three parameters of the regression function for each cow followed a mixed effects linear model. Model 1 posterior mean of heritability was 0.05. Model 2 heritabilities were: 0.27, 0.05, 0.03 and 0.07 at days 14, 60, 120 and 305, respectively. Model 3 heritabilities were 0.57, 0.16, 0.06 and 0.18 at days 14, 60, 120 and 305, respectively. Bayes factors were: 0.011 (Model 1/Model 2), 0.017 (Model 1/Model 3) and 1.535 (Model 2/Model 3). The probability of mastitis for an "average" cow, using Model 2, was: 0.06, 0.05, 0.06 and 0.07 at days 14, 60, 120 and 305, respectively. Relaxing the conditional independence assumption via an autoregressive process (Model 2) improved the results slightly.

摘要

对泌乳期获得的纵向乳腺炎记录进行了贝叶斯分析。数据为3341条检测日二元记录,来自329头头胎荷斯坦奶牛,在泌乳第14天和30天以及此后每30天进行乳腺炎评分。首先,给定奶牛序列的条件概率是每个检测日概率的乘积。奶牛在时间t感染的概率是一个正态积分,其自变量是“固定”和“随机”效应以及时间的函数。潜在正态变量的模型包括以下效应:(1)检测的年月 + 一个五参数线性回归函数(“固定”,在产犊年龄季节内) + 奶牛的遗传值 + 同一奶牛所有记录特有的环境效应 + 残差。(2)与(1)相同,但每头奶牛有五参数随机遗传回归。(3)一种层次结构,其中每头奶牛回归函数的三个参数中的每一个都遵循混合效应线性模型。模型1遗传力的后验均值为0.05。模型2在第14、60、120和305天的遗传力分别为:0.27、0.05、0.03和0.07。模型3在第14、60、120和305天的遗传力分别为0.57、0.16、0.06和0.18。贝叶斯因子为:0.011(模型1/模型2)、0.017(模型1/模型3)和1.535(模型2/模型3)。使用模型2,“平均”奶牛在第14、60、120和305天患乳腺炎的概率分别为:0.06、0.05、0.06和0.07。通过自回归过程(模型2)放宽条件独立性假设,结果略有改善。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验