Suppr超能文献

Impedance measurements of ex vivo rat lung at different volumes of inflation.

作者信息

Oelze Michael L, Miller Rita J, Blue James P, Zachary James F, O'Brien William D

机构信息

Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering, University of Illinois, 405 North Mathews, Urbana, Illinois 61801, USA.

出版信息

J Acoust Soc Am. 2003 Dec;114(6 Pt 1):3384-93. doi: 10.1121/1.1624069.

Abstract

A previous study [J. Acoust. Soc. Am. 111, 1102-1109 (2002)] showed that the occurrence of ultrasonically induced lung hemorrhage in rats was directly correlated to the level of lung inflation. In that study, it was hypothesized that the lung could be modeled as two components consisting of air and parenchyma (contiguous tissue [pleura and septa]). The speed of sound and lung impedance would then depend on the fractional volume of air in the lung. According to that model, an inflated lung should act like a pressure-release surface for sound incident from tissue onto a tissue-lung boundary. A deflated lung containing less air should allow more acoustic energy into the lung tissue because the impedance was more closely matched to the contiguous tissues. In the study reported herein, a measurement technique was devised to calculate the impedance of seven rat lungs, ex vivo, under deflation (atmospheric pressure) and three volumes of inflation pressure (7-cm H2O, 10-cm H2O, and 15-cm H2O). Lungs were dissected from rats and immediately scanned in a tank of degassed 37 degrees C water. The frequency-dependent acoustic pressure reflection coefficient was measured over a frequency range of 3.5 to 10 MHz. From the reflection coefficient, the frequency-dependent lung impedance was calculated with values ranging from an average of 1 Mrayls in deflated lungs to 0.2 Mrayls for fully inflated lungs. Lung impedance calculations showed that deflated lungs had an impedance closer to water (1.52 Mrayls) than inflated lungs. At all volumes of inflation, the lungs acted as pressure-release surfaces relative to the water. The average of the four lung impedance values (deflated, 7-cm H2O, 10-cm H2O, and 15-cm H2O) at each level of inflation was statistically different (p<0.0001).

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验