Suppr超能文献

评估细菌促进多环芳烃生物可利用性的策略。

Evaluation of bacterial strategies to promote the bioavailability of polycyclic aromatic hydrocarbons.

作者信息

Johnsen A R, Karlson U

机构信息

Department of Environmental Chemistry and Microbiology, National Environmental Research Institute, Frederiksborgvej 399, PO Box 358, 4000 Roskilde, Denmark.

出版信息

Appl Microbiol Biotechnol. 2004 Jan;63(4):452-9. doi: 10.1007/s00253-003-1265-z. Epub 2003 Mar 5.

Abstract

Polycyclic aromatic hydrocarbon (PAHs)-degrading bacteria may enhance the bioavailability of PAHs by excreting biosurfactants, by production of extracellular polymeric substances, or by forming biofilms. We tested these hypotheses in pure cultures of PAHs-degrading bacterial strains. Most of the strains did not substantially reduce the surface tension when grown on PAHs in liquid shaken cultures. Thus, pseudo-solubilization of PAHs in biosurfactant micelles seems not to be a general strategy for these isolates to enhance PAHs-bioavailability. Three semi-colloid Sphingomonas polysaccharides all increased the solubility of PAHs (Gellan 1.3- to 5.4-fold, Welan 1.8- to 6.0-fold and Rhamsan 2.4- to 9.0-fold). The increases were most pronounced for the more hydrophobic PAHs. The polysaccharide-sorbed PAHs were bioavailable. Mineralization rates of 9-[14C]-phenanthrene and 3-[14C]-fluoranthene by Sphingobium EPA505, were similar with and without sphingans, indicating that mass-transfer rates from PAHs crystals to the bulk liquid were unaffected by the polysaccharides. Biofilm formation on PAHs crystals may favor the diffusive mass transfer of PAHs from crystals to the bacterial cells. A majority of the PAHs-degraders tested formed biofilms in microtiter wells coated with PAHs crystals. For strains capable of growing on different PAHs; the more soluble the PAHs, the lower the percentage of cells attached. Biofilm formation on PAHs-sources was the predominant mechanism among the tested bacteria to overcome mass transfer limitations when growing on poorly soluble PAHs.

摘要

多环芳烃(PAHs)降解细菌可通过分泌生物表面活性剂、产生细胞外聚合物或形成生物膜来提高PAHs的生物可利用性。我们在PAHs降解细菌菌株的纯培养物中对这些假设进行了测试。在液体振荡培养中,大多数菌株在以PAHs为生长底物时,并没有显著降低表面张力。因此,PAHs在生物表面活性剂胶束中的假增溶似乎不是这些菌株提高PAHs生物可利用性的普遍策略。三种半胶体鞘氨醇多糖均提高了PAHs的溶解度(结冷胶提高1.3至5.4倍,韦兰胶提高1.8至6.0倍,鼠李糖胶提高2.4至9.0倍)。对于疏水性更强的PAHs,溶解度增加最为明显。多糖吸附的PAHs具有生物可利用性。鞘氨醇单胞菌EPA505对9-[14C]-菲和3-[14C]-荧蒽的矿化率,在有和没有鞘氨醇聚糖的情况下相似,这表明从PAHs晶体到本体液体的传质速率不受多糖的影响。在PAHs晶体上形成生物膜可能有利于PAHs从晶体向细菌细胞的扩散传质。大多数测试的PAHs降解菌在涂有PAHs晶体的微孔板中形成了生物膜。对于能够在不同PAHs上生长的菌株,PAHs的溶解度越高,附着细胞的百分比越低。在PAHs来源上形成生物膜是测试细菌在以难溶性PAHs为生长底物时克服传质限制的主要机制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验