Suppr超能文献

大脑如何处理文本中的因果推理。

How the brain processes causal inferences in text.

作者信息

Mason Robert A, Just Marcel Adam

机构信息

Center for Cognitive Brain Imaging, Carnegie Mellon University, USA.

出版信息

Psychol Sci. 2004 Jan;15(1):1-7. doi: 10.1111/j.0963-7214.2004.01501001.x.

Abstract

Theoretical models of text processing, such as the construction-integration framework, pose fundamental questions about causal inference making that are not easily addressed by behavioral studies. In particular, a common result is that causal relatedness has a different effect on text reading times than on memory for the text: Whereas reading times increase linearly as causal relatedness decreases, memory for the text is best for events that are related by a moderate degree of causal relatedness and is poorer for events with low and high relatedness. Our functional magnetic resonance imaging study of the processing of two-sentence passages that varied in their degree of causal relatedness suggests that the inference process can be analyzed into two components, generation and integration, that are subserved by two large-scale cortical networks (a reasoning system in dorsolateral prefrontal cortex and the right-hemisphere language areas). These two cortical networks, which are distinguishable from the classical left-hemisphere language areas, approximately correspond to the two functional relations observed in the behavioral results.

摘要

文本处理的理论模型,如建构-整合框架,提出了关于因果推理的基本问题,而行为研究不易解决这些问题。特别是,一个常见的结果是,因果关联性对文本阅读时间的影响与对文本记忆的影响不同:随着因果关联性降低,阅读时间呈线性增加,而文本记忆对于具有中等因果关联性的事件最佳,对于低关联性和高关联性的事件则较差。我们对因果关联性程度不同的两句话段落进行处理的功能磁共振成像研究表明,推理过程可分为两个成分,即生成和整合,这两个成分由两个大规模皮层网络(背外侧前额叶皮层的推理系统和右半球语言区域)支持。这两个皮层网络与经典的左半球语言区域不同,大致对应于行为结果中观察到的两种功能关系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验