Winder S J, Sutherland C, Walsh M P
MRC Group in Signal Transduction, Faculty of Medicine, University of Calgary, Alberta, Canada.
Biochem J. 1992 Dec 15;288 ( Pt 3)(Pt 3):733-9. doi: 10.1042/bj2880733.
Thiosphosphorylated smooth muscle myosin and skeletal muscle myosin, both of which express Ca(2+)-independent actin-activated MgATPase activity, were used to examine the functional effects of calponin and caldesmon separately and together. Separately, calponin and caldesmon inhibited the actin-activated MgATPase activities of thiophosphorylated smooth muscle myosin and skeletal muscle myosin, calponin being significantly more potent in both systems. Calponin-mediated inhibition resulted from the interaction of calponin with actin since it could be reversed by increasing the actin concentration. Caldesmon had no significant influence on the calponin-induced inhibition of the smooth muscle actomyosin ATPase, nor did calponin have a significant effect on caldesmon-induced inhibition. In the skeletal muscle system, however, caldesmon was found to override the inhibitory effect of calponin. This difference probably reflects the lower affinity of skeletal muscle actin for calponin compared with that of smooth muscle actin. Calponin inhibition of skeletal muscle actin-activated myosin MgATPase was not significantly affected by troponin/tropomyosin, suggesting that the thin filament can readily accommodate calponin in addition to the troponin complex, or that calponin may be able to displace troponin. Calponin also inhibited acto-phosphorylated smooth muscle heavy meromyosin and acto-skeletal muscle heavy meromyosin MgATPases. The most appropriate protein preparations for analysis of the regulatory effects of calponin in the actomyosin system therefore would be smooth muscle actin, tropomyosin and thiophosphorylated myosin, and for analysis of the kinetic effects of calponin on the actomyosin ATPase cycle they would be smooth muscle actin, tropomyosin and phosphorylated heavy meromyosin, due to the latter's solubility.
硫代磷酸化的平滑肌肌球蛋白和骨骼肌肌球蛋白都表现出不依赖钙离子的肌动蛋白激活的MgATP酶活性,被用于分别以及共同检测钙调蛋白和钙调素的功能作用。单独来看,钙调蛋白和钙调素均抑制硫代磷酸化的平滑肌肌球蛋白和骨骼肌肌球蛋白的肌动蛋白激活的MgATP酶活性,在两个系统中钙调蛋白的作用都显著更强。钙调蛋白介导的抑制作用源于钙调蛋白与肌动蛋白的相互作用,因为增加肌动蛋白浓度可使其逆转。钙调素对钙调蛋白诱导的平滑肌肌动球蛋白ATP酶抑制作用无显著影响,钙调蛋白对钙调素诱导的抑制作用也无显著影响。然而,在骨骼肌系统中,发现钙调素可抵消钙调蛋白的抑制作用。这种差异可能反映出与平滑肌肌动蛋白相比,骨骼肌肌动蛋白对钙调蛋白的亲和力较低。钙调蛋白对骨骼肌肌动蛋白激活的肌球蛋白MgATP酶的抑制作用不受肌钙蛋白/原肌球蛋白的显著影响,这表明细肌丝除了能容纳肌钙蛋白复合物外,还能轻易容纳钙调蛋白,或者钙调蛋白可能能够取代肌钙蛋白。钙调蛋白还抑制肌动蛋白磷酸化的平滑肌重酶解肌球蛋白和肌动蛋白骨骼肌重酶解肌球蛋白的MgATP酶。因此,在肌动球蛋白系统中分析钙调蛋白调节作用最合适的蛋白质制剂是平滑肌肌动蛋白、原肌球蛋白和硫代磷酸化肌球蛋白,而由于磷酸化重酶解肌球蛋白的溶解性,分析钙调蛋白对肌动球蛋白ATP酶循环的动力学作用时,最合适的蛋白质制剂是平滑肌肌动蛋白、原肌球蛋白和磷酸化重酶解肌球蛋白。