Suppr超能文献

将团簇组装氧化锆表面的纳米级形貌信息转化为机械转导事件可促进神经元分化。

Conversion of nanoscale topographical information of cluster-assembled zirconia surfaces into mechanotransductive events promotes neuronal differentiation.

作者信息

Schulte Carsten, Rodighiero Simona, Cappelluti Martino Alfredo, Puricelli Luca, Maffioli Elisa, Borghi Francesca, Negri Armando, Sogne Elisa, Galluzzi Massimiliano, Piazzoni Claudio, Tamplenizza Margherita, Podestà Alessandro, Tedeschi Gabriella, Lenardi Cristina, Milani Paolo

机构信息

CIMAINA, Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, Milan, 20133, Italy.

Fondazione Filarete, via le Ortles 22/4, Milan, 20139, Italy.

出版信息

J Nanobiotechnology. 2016 Mar 9;14:18. doi: 10.1186/s12951-016-0171-3.

Abstract

BACKGROUND

Thanks to mechanotransductive components cells are competent to perceive nanoscale topographical features of their environment and to convert the immanent information into corresponding physiological responses. Due to its complex configuration, unraveling the role of the extracellular matrix is particularly challenging. Cell substrates with simplified topographical cues, fabricated by top-down micro- and nanofabrication approaches, have been useful in order to identify basic principles. However, the underlying molecular mechanisms of this conversion remain only partially understood.

RESULTS

Here we present the results of a broad, systematic and quantitative approach aimed at understanding how the surface nanoscale information is converted into cell response providing a profound causal link between mechanotransductive events, proceeding from the cell/nanostructure interface to the nucleus. We produced nanostructured ZrO2 substrates with disordered yet controlled topographic features by the bottom-up technique supersonic cluster beam deposition, i.e. the assembling of zirconia nanoparticles from the gas phase on a flat substrate through a supersonic expansion. We used PC12 cells, a well-established model in the context of neuronal differentiation. We found that the cell/nanotopography interaction enforces a nanoscopic architecture of the adhesion regions that affects the focal adhesion dynamics and the cytoskeletal organization, which thereby modulates the general biomechanical properties by decreasing the rigidity of the cell. The mechanotransduction impacts furthermore on transcription factors relevant for neuronal differentiation (e.g. CREB), and eventually the protein expression profile. Detailed proteomic data validated the observed differentiation. In particular, the abundance of proteins that are involved in adhesome and/or cytoskeletal organization is striking, and their up- or downregulation is in line with their demonstrated functions in neuronal differentiation processes.

CONCLUSION

Our work provides a deep insight into the molecular mechanotransductive mechanisms that realize the conversion of the nanoscale topographical information of SCBD-fabricated surfaces into cellular responses, in this case neuronal differentiation. The results lay a profound cell biological foundation indicating the strong potential of these surfaces in promoting neuronal differentiation events which could be exploited for the development of prospective research and/or biomedical applications. These applications could be e.g. tools to study mechanotransductive processes, improved neural interfaces and circuits, or cell culture devices supporting neurogenic processes.

摘要

背景

借助机械转导组件,细胞能够感知其周围环境的纳米级地形特征,并将内在信息转化为相应的生理反应。由于细胞外基质的结构复杂,阐明其作用极具挑战性。通过自上而下的微纳加工方法制造的具有简化地形线索的细胞基质,有助于确定基本原理。然而,这种转化的潜在分子机制仍仅被部分理解。

结果

在此,我们展示了一种广泛、系统且定量的方法的结果,旨在理解表面纳米级信息如何转化为细胞反应,从而在从细胞/纳米结构界面到细胞核的机械转导事件之间建立起深刻的因果联系。我们通过自下而上的超音速团簇束沉积技术制备了具有无序但可控地形特征的纳米结构二氧化锆基底,即通过超音速膨胀使气相中的氧化锆纳米颗粒在平坦基底上组装。我们使用了PC12细胞,这是神经元分化领域中一个成熟的模型。我们发现细胞/纳米地形相互作用强化了粘附区域的纳米级结构,这影响了粘着斑动力学和细胞骨架组织,进而通过降低细胞的刚性来调节一般生物力学特性。机械转导还会影响与神经元分化相关的转录因子(如CREB),最终影响蛋白质表达谱。详细的蛋白质组学数据验证了观察到的分化情况。特别是,参与粘着斑和/或细胞骨架组织的蛋白质丰度显著,它们的上调或下调与它们在神经元分化过程中已证实的功能一致。

结论

我们的工作深入洞察了分子机械转导机制,该机制实现了将SCBD制造表面的纳米级地形信息转化为细胞反应,在本研究中即神经元分化。这些结果奠定了深厚的细胞生物学基础,表明这些表面在促进神经元分化事件方面具有强大潜力,可用于前瞻性研究和/或生物医学应用的开发。这些应用例如可以是研究机械转导过程的工具、改进的神经接口和电路,或支持神经发生过程的细胞培养装置。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bff/4784317/a782a4e74f6e/12951_2016_171_Fig1_HTML.jpg

相似文献

2
Quantitative Control of Protein and Cell Interaction with Nanostructured Surfaces by Cluster Assembling.
Acc Chem Res. 2017 Feb 21;50(2):231-239. doi: 10.1021/acs.accounts.6b00433. Epub 2017 Jan 24.
5
Bottom-up engineering of the surface roughness of nanostructured cubic zirconia to control cell adhesion.
Nanotechnology. 2012 Nov 30;23(47):475101. doi: 10.1088/0957-4484/23/47/475101. Epub 2012 Oct 30.
7
Neuronal Cells Confinement by Micropatterned Cluster-Assembled Dots with Mechanotransductive Nanotopography.
ACS Biomater Sci Eng. 2018 Dec 10;4(12):4062-4075. doi: 10.1021/acsbiomaterials.8b00916. Epub 2018 Nov 28.
8
Involvement of N-cadherin/β-catenin interaction in the micro/nanotopography induced indirect mechanotransduction.
Biomaterials. 2014 Aug;35(24):6206-18. doi: 10.1016/j.biomaterials.2014.04.068. Epub 2014 May 10.
9
The glycocalyx affects the mechanotransductive perception of the topographical microenvironment.
J Nanobiotechnology. 2022 Sep 19;20(1):418. doi: 10.1186/s12951-022-01585-5.

引用本文的文献

1
Substrate topography affects PC12 cell differentiation through mechanotransduction mechanisms.
Mechanobiol Med. 2024 Jan 24;2(1):100039. doi: 10.1016/j.mbm.2024.100039. eCollection 2024 Mar.
3
Understanding, engineering, and modulating the growth of neural networks: An interdisciplinary approach.
Biophys Rev (Melville). 2021 Jun 17;2(2):021303. doi: 10.1063/5.0043014. eCollection 2021 Jun.
4
Microfluidic Systems for Neural Cell Studies.
Bioengineering (Basel). 2023 Jul 30;10(8):902. doi: 10.3390/bioengineering10080902.
6
Nanotherapeutic and Stem Cell Therapeutic Strategies in Neurodegenerative Diseases: A Promising Therapeutic Approach.
Int J Nanomedicine. 2023 Feb 3;18:611-626. doi: 10.2147/IJN.S395010. eCollection 2023.
8
Phosphoproteomic mapping of CCR5 and ACKR2 signaling properties.
Front Mol Biosci. 2022 Nov 22;9:1060555. doi: 10.3389/fmolb.2022.1060555. eCollection 2022.
9
Mechanotransductive Receptor Piezo1 as a Promising Target in the Treatment of Neurological Diseases.
Curr Neuropharmacol. 2023;21(10):2030-2035. doi: 10.2174/1570159X20666220927103454.
10
The glycocalyx affects the mechanotransductive perception of the topographical microenvironment.
J Nanobiotechnology. 2022 Sep 19;20(1):418. doi: 10.1186/s12951-022-01585-5.

本文引用的文献

1
Lamellipodial tension, not integrin/ligand binding, is the crucial factor to realise integrin activation and cell migration.
Eur J Cell Biol. 2016 Jan;95(1):1-14. doi: 10.1016/j.ejcb.2015.10.002. Epub 2015 Oct 19.
2
Step-by-step quantitative analysis of focal adhesions.
MethodsX. 2014 Jul 7;1:56-9. doi: 10.1016/j.mex.2014.06.004. eCollection 2014.
3
Nanotopographical Surfaces for Stem Cell Fate Control: Engineering Mechanobiology from the Bottom.
Nano Today. 2014 Dec 1;9(6):759-784. doi: 10.1016/j.nantod.2014.12.002.
5
Emerging properties of adhesion complexes: what are they and what do they do?
Trends Cell Biol. 2015 Jul;25(7):388-97. doi: 10.1016/j.tcb.2015.02.008. Epub 2015 Mar 27.
6
Application of biomaterials to advance induced pluripotent stem cell research and therapy.
EMBO J. 2015 Apr 15;34(8):987-1008. doi: 10.15252/embj.201490756. Epub 2015 Mar 12.
7
Measurement of subcellular force generation in neurons.
Biophys J. 2015 Mar 10;108(5):1027-37. doi: 10.1016/j.bpj.2015.01.021.
8
ARF1 regulates adhesion of MDA-MB-231 invasive breast cancer cells through formation of focal adhesions.
Cell Signal. 2015 Mar;27(3):403-15. doi: 10.1016/j.cellsig.2014.11.032. Epub 2014 Dec 19.
9
Appreciating force and shape—the rise of mechanotransduction in cell biology.
Nat Rev Mol Cell Biol. 2014 Dec;15(12):825-33. doi: 10.1038/nrm3903. Epub 2014 Oct 30.
10
CLIC4 regulates cell adhesion and β1 integrin trafficking.
J Cell Sci. 2014 Dec 15;127(Pt 24):5189-203. doi: 10.1242/jcs.150623. Epub 2014 Oct 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验