Suppr超能文献

利用完整蛋白质质谱数据预测翻译后修饰

Prediction of posttranslational modifications using intact-protein mass spectrometric data.

作者信息

Holmes Mark R, Giddings Michael C

机构信息

Departments of Microbiology & Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7290, USA.

出版信息

Anal Chem. 2004 Jan 15;76(2):276-82. doi: 10.1021/ac034739d.

Abstract

We present a Web-based application that uses whole-protein masses determined by mass spectrometry to identify putative co- and posttranslational proteolytic cleavages and chemical modifications. The protein cleavage and modification engine (PROCLAME) requires as input an intact mass measurement and a precursor identification based on peptide mass fingerprinting or tandem mass spectrometry. This approach predicts mass-modifying events using a depth-first tree search, bounded by a set of rules controlled by a custom-built fuzzy logic engine, to explore a large number of possible combinations of modifications accounting for the experimental mass. Candidates are saved during a search if they are within a user-specified instrument mass accuracy; the total number of possible candidates searched is based on a specified fuzzy cutoff score. Candidates are scored and ranked using a simple probabilistic model. There is generally not enough information in an intact mass measurement to determine a single unique protein characterization; however, the program provides utility by expediting the identification of sets of putative events consistent with the mass data and ranking them for further investigation. This approach uses a simple, intuitive rule base and lends itself to discovery of unannotated posttranslational events. We have assessed the program with both in silico-generated test data and with published data from an analysis of large ribosomal subunit proteins, both from the yeast S. cerevisiae. Results indicate a high degree of sensitivity and specificity in characterizing proteins whose masses resulted from reasonable proteolysis and covalent modification scenarios. The application is available on the web at http://proclame.unc.edu.

摘要

我们展示了一个基于网络的应用程序,它利用质谱法测定的全蛋白质量来识别假定的共翻译和翻译后蛋白水解切割及化学修饰。蛋白质切割与修饰引擎(PROCLAME)需要完整的质量测量值以及基于肽质量指纹图谱或串联质谱法的前体识别作为输入。这种方法使用深度优先树搜索来预测质量修饰事件,由一个定制的模糊逻辑引擎控制的一组规则界定,以探索大量可能的修饰组合来解释实验质量。如果候选物在用户指定的仪器质量精度范围内,则在搜索过程中保存;搜索的可能候选物总数基于指定的模糊截止分数。使用简单的概率模型对候选物进行评分和排名。完整的质量测量中通常没有足够的信息来确定单一独特的蛋白质特征;然而,该程序通过加快识别与质量数据一致的假定事件集并对其进行排名以供进一步研究,从而提供了实用价值。这种方法使用简单直观的规则库,有助于发现未注释的翻译后事件。我们使用计算机生成的测试数据以及来自酵母酿酒酵母大亚基核糖体蛋白分析的已发表数据对该程序进行了评估。结果表明,在表征因合理的蛋白水解和共价修饰情况而产生质量的蛋白质方面,该程序具有高度的敏感性和特异性。该应用程序可在网站http://proclame.unc.edu上获取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验