Suppr超能文献

Effects of altered calcium homeostasis on the expression of glutathione S-transferase isozymes in primary cultured rat hepatocytes.

作者信息

Dwivedi R S, Gruebele A, Novak R F

机构信息

Institute of Chemical Toxicology, Wayne State University, Detroit, MI 48201.

出版信息

Biochem Pharmacol. 1992 Dec 1;44(11):2099-103. doi: 10.1016/0006-2952(92)90334-f.

Abstract

The effects of altered Ca2+ homeostasis on glutathione S-transferase (GST) isozyme expression in cultured primary rat hepatocytes were examined. Isolated hepatocytes were cultured on Vitrogen substratum in serum-free modified Chee's essential medium and treated with Ca2+ ionophore A23187 at 120 hr post-plating. GST activity increased slightly, albeit significantly, in a concentration-dependent manner in A23187-treated hepatocytes relative to untreated controls. Western blot analysis using GST class alpha and mu specific antibodies showed an approximately 1.6- and 1.5-fold increase in the class alpha, Ya and Yc subunits, respectively, whereas no significant increase (approximately 1.2-fold) in class mu GST expression was observed following A23187 treatment. Northern blot analysis revealed an approximately 5-fold increase in GST class alpha and an approximately 7-fold increase in class mu GST mRNA levels in ionophore-treated hepatocytes compared to untreated cells. Results of the Western and Northern blot analyses of the ionophore-treated hepatocytes were compared with those obtained for tert-butyl hydroperoxide-treated cells. Immunoblot analysis showed a significant increase in the expression of GST class alpha, Ya and Yc subunits, approximately 1.8- and 1.7-fold, respectively, for tert-butyl hydroperoxide-treated hepatocytes as compared to controls, with little or no increase in class mu GSTs. Northern blot analysis showed approximately 3- and 2-fold increases, respectively, in class alpha and mu GST mRNA levels, following the tert-butyl hydroperoxide treatment. The results of the present investigation show that alterations in Ca2+ homeostasis produced by either Ca2+ ionophore A23187 or tert-butyl hydroperoxide treatment of hepatocytes enhanced the expression of GST isozymes in primary cultured rat hepatocytes.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验