Kwok J C, Richardson D R
Children's Cancer Institute Australia for Medical Research, Iron Metabolism and Chelation Program, Randwick, Sydney, NSW, Australia.
Mol Pharmacol. 2004 Jan;65(1):181-95. doi: 10.1124/mol.65.1.181.
Anthracyclines are potent anticancer agents, but their use is limited by cardiotoxicity at high cumulative doses. The mechanisms involved in anthracycline-mediated cardiotoxicity are still poorly understood, but numerous investigations have indicated a role for iron in this process. Our previous studies using neoplastic and myocardial cells showed that anthracyclines inhibit iron mobilization from the iron storage protein, ferritin, resulting in marked accumulation of ferritin-iron. Although the process of ferritin-iron mobilization is little understood, catabolism of ferritin by lysosomes may be a likely mechanism. Because anthracyclines have been shown to accumulate in lysosomes, this latter organelle may be a potential target for these drugs. The present study demonstrated, using native polyacrylamide gel electrophoresis-59Fe autoradiography, that ferritin-59Fe mobilization is an energy-dependent process that also requires protein synthesis. Depression of lysosomal activity via the enzyme inhibitors E64d [(2S,3S)-trans-epoxysuccinyl-l-leucylamido-2-methylbutane ethyl ester] and leupeptin or the lysosomotropic agents ammonium chloride, chloroquine, and methylamine resulted in a 3- to 5-fold increase in 59Feferritin accumulation compared with control cells. In addition, the proteasome inhibitors N-benzoyloxycarbonyl (Z)-Leu-Leuleucinal (MG132) and lactacystin also significantly increased 59Fe-ferritin levels compared with control cells. These effects of lysosomotropic agents or inhibitors of lysosomal activity were comparable with that observed with the anthracycline doxorubicin. Collectively, our study indicates a role for lysosomes and proteasomes in ferritin-iron mobilization, and this pathway is dependent on metabolic energy and protein synthesis. Furthermore, the lysosome/proteasome pathway may be a novel anthracycline target, inhibiting iron mobilization from ferritin that is essential for vital iron-requiring processes such as DNA synthesis.
蒽环类药物是强效抗癌剂,但其使用因高累积剂量时的心脏毒性而受到限制。蒽环类药物介导的心脏毒性所涉及的机制仍知之甚少,但大量研究表明铁在这一过程中起作用。我们之前使用肿瘤细胞和心肌细胞的研究表明,蒽环类药物抑制铁从铁储存蛋白铁蛋白中动员出来,导致铁蛋白 - 铁显著积累。尽管铁蛋白 - 铁动员过程了解甚少,但溶酶体对铁蛋白的分解代谢可能是一种可能的机制。由于已证明蒽环类药物会在溶酶体中积累,后一种细胞器可能是这些药物的潜在靶点。本研究使用天然聚丙烯酰胺凝胶电泳 - 59Fe 放射自显影法证明,铁蛋白 - 59Fe 动员是一个能量依赖过程,也需要蛋白质合成。通过酶抑制剂 E64d[(2S,3S) - 反式 - 环氧琥珀酰 - l - 亮氨酰胺 - 2 - 甲基丁烷乙酯]和亮抑酶肽或溶酶体促渗剂氯化铵、氯喹和甲胺抑制溶酶体活性,与对照细胞相比,导致 59Fe - 铁蛋白积累增加 3 至 5 倍。此外,蛋白酶体抑制剂 N - 苯甲酰氧基羰基(Z) - 亮氨酰 - 亮氨酰 - 亮氨酸甲酯(MG132)和乳胞素与对照细胞相比也显著提高了 59Fe - 铁蛋白水平。溶酶体促渗剂或溶酶体活性抑制剂的这些作用与蒽环类药物阿霉素观察到的作用相当。总体而言,我们的研究表明溶酶体和蛋白酶体在铁蛋白 - 铁动员中起作用,并且该途径依赖于代谢能量和蛋白质合成。此外,溶酶体/蛋白酶体途径可能是一个新的蒽环类药物靶点,抑制铁从铁蛋白中动员出来,而铁蛋白对诸如 DNA 合成等重要的需铁过程至关重要。