Rubin D, Laposata M
Department of Pathology, Massachusetts General Hospital, Boston 02114.
J Lipid Res. 1992 Oct;33(10):1431-40.
The biologic effect of eicosanoids depends in large measure upon the relative masses in tissues of eicosanoids derived from the n-6 fatty acids, dihomogammalinolenic acid and arachidonic acid, and the n-3 fatty acid, eicosapentaenoic acid. Generation of this tissue balance is related to the relative cellular masses of these precursor fatty acids, the competition between them for entry into and release from cellular phospholipids, and their competition for the enzymes that catalyze their conversion to eicosanoids. In order to better understand these processes, we studied the cellular interactions of n-6 and n-3 fatty acids using an essential fatty acid-deficient, PGE-producing, mouse fibrosarcoma cell line, EFD-1. Unlike studies using cells with endogenous pools of n-6 and n-3 fatty acids, the use of EFD-1 cells enabled us to examine the metabolic fate of each family of fatty acids both in the presence and in the absence of the second family of fatty acids. Thus, the specific effects of one fatty acid family on the other could be directly assessed. In addition, we were able to replete the cells with dihomogammalinolenic acid (DHLA), arachidonic acid (AA), and eicosapentaenoic acid (EPA) of known specific activities; thus the masses of cellular DHLA, AA, and EPA, and their metabolites, PGE1, PGE2, and PGE3, respectively, could be accurately quantitated. The major findings of this study were: 1) n-6 fatty acids markedly stimulated the elongation of EPA to 22:5 whereas n-3 fatty acids inhibited the delta 5 desaturation of DHLA to AA and the elongation of AA to 22:4; 2) n-6 fatty acids caused a specific redistribution of cellular EPA from phospholipid to triacylglycerol; 3) n-3 fatty acids reduced the mass of DHLA and AA only in phosphatidylinositol whereas n-6 fatty acids reduced the mass of EPA to a similar extent in all cellular phospholipids; and 4) n-3 fatty acids caused an identical (33%) reduction in the bradykinin-induced release of PGE1 and PGE2, whereas n-6 fatty acids stimulated PGE3 release 2.3-fold. Together, these highly quantitative metabolic data increase our understanding of the regulation of both the cellular levels of DHLA, AA, and EPA, and their availability for eicosanoid synthesis. In addition, these findings provide a context for the effective use of these fatty acids in dietary therapies directed at modulation of eicosanoid production.
类二十烷酸的生物学效应在很大程度上取决于组织中源自n-6脂肪酸、二高-γ-亚麻酸和花生四烯酸以及n-3脂肪酸二十碳五烯酸的类二十烷酸的相对含量。这种组织平衡的产生与这些前体脂肪酸的相对细胞含量、它们进入细胞磷脂和从细胞磷脂释放过程中的相互竞争以及它们对催化其转化为类二十烷酸的酶的竞争有关。为了更好地理解这些过程,我们使用一种必需脂肪酸缺乏、产生PGE的小鼠纤维肉瘤细胞系EFD-1研究了n-6和n-3脂肪酸的细胞相互作用。与使用具有内源性n-6和n-3脂肪酸池的细胞的研究不同,使用EFD-1细胞使我们能够在有和没有第二脂肪酸家族存在的情况下检查每个脂肪酸家族的代谢命运。因此,可以直接评估一个脂肪酸家族对另一个脂肪酸家族的特定影响。此外,我们能够用已知比活性的二高-γ-亚麻酸(DHLA)、花生四烯酸(AA)和二十碳五烯酸(EPA)使细胞重新充满;因此,可以准确地定量细胞中DHLA、AA和EPA的含量以及它们的代谢产物PGE1、PGE2和PGE3的含量。本研究的主要发现如下:1)n-6脂肪酸显著刺激EPA延长至22:5,而n-3脂肪酸抑制DHLA向AA的Δ5去饱和以及AA向22:4的延长;2)n-6脂肪酸导致细胞内EPA从磷脂特异性重新分布到三酰甘油;3)n-3脂肪酸仅降低磷脂酰肌醇中DHLA和AA的含量,而n-6脂肪酸在所有细胞磷脂中以相似程度降低EPA的含量;4)n-3脂肪酸使缓激肽诱导的PGE1和PGE2释放减少相同的量(33%),而n-6脂肪酸刺激PGE3释放增加2.3倍。总之,这些高度定量的代谢数据加深了我们对DHLA、AA和EPA细胞水平调节及其类二十烷酸合成可用性的理解。此外,这些发现为在旨在调节类二十烷酸产生的饮食疗法中有效使用这些脂肪酸提供了背景。