Suppr超能文献

利用人工神经网络从药物结构预测药代动力学参数。

Pharmacokinetic parameter prediction from drug structure using artificial neural networks.

作者信息

Turner Joseph V, Maddalena Desmond J, Cutler David J

机构信息

Faculty of Pharmacy, The University of Sydney, Sydney 2006, Australia.

出版信息

Int J Pharm. 2004 Feb 11;270(1-2):209-19. doi: 10.1016/j.ijpharm.2003.10.011.

Abstract

Simple methods for determining the human pharmacokinetics of known and unknown drug-like compounds is a much sought-after goal in the pharmaceutical industry. The current study made use of artificial neural networks (ANNs) for the prediction of clearances, fraction bound to plasma proteins, and volume of distribution of a series of structurally diverse compounds. A number of theoretical descriptors were generated from the drug structures and both automated and manual pruning were used to derive optimal subsets of descriptors for quantitative structure-pharmacokinetic relationship models. Models were trained on one set of compounds and validated with another. Absolute predicted ability was evaluated using a further independent test set of compounds. Correlations for test compounds ranged from 0.855 to 0.992. Predicted values agreed closely with experimental values for total clearance, renal clearance, and volume of distribution, while predictions for protein binding were encouraging. The combination of descriptor generation, ANNs, and the speed and success of this technique compared with conventional methods shows strong potential for use in pharmaceutical product development.

摘要

确定已知和未知类药物化合物人体药代动力学的简单方法是制药行业中备受追捧的目标。当前的研究利用人工神经网络(ANNs)来预测一系列结构多样化合物的清除率、与血浆蛋白结合的分数以及分布容积。从药物结构中生成了许多理论描述符,并使用自动和手动剪枝来推导定量构效关系模型的最佳描述符子集。模型在一组化合物上进行训练,并用另一组进行验证。使用另外一组独立的化合物测试集评估绝对预测能力。测试化合物的相关性范围为0.855至0.992。预测值与总清除率、肾清除率和分布容积的实验值非常吻合,而蛋白质结合的预测结果也令人鼓舞。与传统方法相比,描述符生成、人工神经网络以及该技术的速度和成功率的结合显示出在药品开发中使用的强大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验